Acoustic Photometry of Biomedical Parameters for Association with Diabetes and Covid-19
Abstract
Doi: 10.28991/esj-2022-SPER-04
Full Text: PDF
Keywords
References
Arden, M. A., & Chilcot, J. (2020). Health psychology and the coronavirus (COVID-19) global pandemic: A call for research. British Journal of Health Psychology, 25(2), 231–232. doi:10.1111/bjhp.12414.
Our World in Data Organization. (2020). Available online: https://ourworldindata.org (accessed on July 2021).
Pal, R., & Bhansali, A. (2020). COVID-19, diabetes mellitus and ACE2: The conundrum. Diabetes Research and Clinical Practice, 162. doi:10.1016/j.diabres.2020.108132.
Asmat, U., Abad, K., & Ismail, K. (2016). Diabetes mellitus and oxidative stress—A concise review. Saudi Pharmaceutical Journal, 24(5), 547–553. doi:10.1016/j.jsps.2015.03.013.
Zhang, P., Zhang, X., Brown, J., Vistisen, D., Sicree, R., Shaw, J., & Nichols, G. (2010). Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Research and Clinical Practice, 87(3), 293–301. doi:10.1016/j.diabres.2010.01.026.
Pal, R., & Bhansali, A. (2020). COVID-19, diabetes mellitus and ACE2: The conundrum. Diabetes Research and Clinical Practice, 162. doi:10.1016/j.diabres.2020.108132.
Guo, W., Li, M., Dong, Y., Zhou, H., Zhang, Z., Tian, C., Qin, R., Wang, H., Shen, Y., Du, K., Zhao, L., Fan, H., Luo, S., & Hu, D. (2020). Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes/Metabolism Research and Reviews, 36(7), 3319. doi:10.1002/dmrr.3319.
Forouhi, N. G., & Wareham, N. J. (2019). Epidemiology of diabetes. Medicine (United Kingdom), 47(1), 22–27. doi:10.1016/j.mpmed.2018.10.004.
Papatheodorou, K., Papanas, N., Banach, M., Papazoglou, D., & Edmonds, M. (2016). Complications of Diabetes 2016. In Journal of Diabetes Research (Vol. 2016). doi:10.1155/2016/6989453.
Elfström, P., Sundström, J., & Ludvigsson, J. F. (2014). Systematic review with meta-analysis: Associations between coeliac disease and type 1 diabetes. Alimentary Pharmacology and Therapeutics, 40(10), 1123–1132. doi:10.1111/apt.12973.
Harding, J. L., Pavkov, M. E., Magliano, D. J., Shaw, J. E., & Gregg, E. W. (2019). Global trends in diabetes complications: a review of current evidence. Diabetologia, 62(1), 3–16. doi:10.1007/s00125-018-4711-2.
Benichou, T., Pereira, B., Mermillod, M., Tauveron, I., Pfabigan, D., Maqdasy, S., & Dutheil, F. (2018). Heart rate variability in type 2 diabetes mellitus: A systematic review and meta-analysis. PLoS ONE, 13(4), 195166. doi:10.1371/journal.pone.0195166.
Haroon, N., & Tiwana, M. I. (2017). Design and Development of Non-Invasive Prototype to Measure Pulse Rate, Blood Glucose and Oxygen Saturation Level in Arterial Blood. Future Technologies Conference (November 2017), Vancouver, Canada.
Ionescu, M. (2019). Glucometry and pulse oximetry-comparative noninvasive methods for determining blood glucose. 2019 7th E-Health and Bioengineering Conference, EHB 2019, 1–4. doi:10.1109/EHB47216.2019.8970001.
Pai, P. P., De, A., & Banerjee, S. (2017). Accuracy enhancement for noninvasive glucose estimation using dual-wavelength photoacoustic measurements and kernel-based calibration. IEEE transactions on instrumentation and measurement, 67(1), 126-136. doi:10.1109/TIM.2017.2761237.
Pai, P. P., Kumar Sanki, P., De, A., & Banerjee, S. (2015). NIR photoacoustic spectroscopy for non-invasive glucose measurement. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2015-November, 7978–7981. doi:10.1109/EMBC.2015.7320243.
Jahana, T., & Higa, H. (2020). Non-Invasive Blood Glucose Monitoring Device Using Photoacoustic Spectroscopy. ICIIBMS 2020 - 5th International Conference on Intelligent Informatics and Biomedical Sciences, 85–88. doi:10.1109/ICIIBMS50712.2020.9336413.
Nanayakkara, N. D., Munasingha, S. C., & Ruwanpathirana, G. P. (2018). Non-invasive blood glucose monitoring using a hybrid technique. MERCon 2018 - 4th International Multidisciplinary Moratuwa Engineering Research Conference, 7–12. doi:10.1109/MERCon.2018.8421885.
Balasubramanian, S., Kashyap, R., Cvn, S. T., & Anuradha, M. (2020). Hybrid Prediction Model for Type-2 Diabetes with Class Imbalance. Proceedings of the 2020 IEEE International Conference on Machine Learning and Applied Network Technologies, ICMLANT 2020, 1–6. doi:10.1109/ICMLANT50963.2020.9355975.
Gayathri, B., Sruthi, K., & Menon, K. U. (2017, April). Non-invasive blood glucose monitoring using near infrared spectroscopy. In 2017 International Conference on Communication and Signal Processing (ICCSP) (pp. 1139-1142). IEEE. doi:10.1109/ICCSP.2017.8286555.
Habibullah, M., Oninda, M. A. M., Bahar, A. N., Dinh, A., & Wahid, K. A. (2019). NIR-Spectroscopic Classification of Blood Glucose Level using Machine Learning Approach. 2019 IEEE Canadian Conference of Electrical and Computer Engineering, CCECE 2019, 1–4. doi:10.1109/CCECE.2019.8861843.
Kasahara, R., Kino, S., Soyama, S., & Matsuura, Y. (2018). Noninvasive glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers. Biomedical Optics Express, 9(1), 289. doi:10.1364/boe.9.000289.
Chen, Y., Liu, J., Pan, Z., & Shimamoto, S. (2020). Non-invasive Blood Glucose Measurement Based on mid-Infrared Spectroscopy. 2020 IEEE 17th Annual Consumer Communications and Networking Conference, CCNC 2020, 1–5. doi:10.1109/CCNC46108.2020.9045160.
Li, X., Huang, X., Mo, J., Wang, H., Huang, Q., Yang, C., Zhang, T., Chen, H. J., Hang, T., Liu, F., Jiang, L., Wu, Q., Li, H., Hu, N., & Xie, X. (2021). A Fully Integrated Closed-Loop System Based on Mesoporous Microneedles-Iontophoresis for Diabetes Treatment. Advanced Science, 8(16), 2100827. doi:10.1002/advs.202100827.
Yang, J., Li, Y., Ye, R., Zheng, Y., Li, X., Chen, Y., Xie, X., & Jiang, L. (2020). Smartphone-powered iontophoresis-microneedle array patch for controlled transdermal delivery. Microsystems and Nanoengineering, 6(1), 1–14. doi:10.1038/s41378-020-00224-z.
Bolla, A. S., & Priefer, R. (2020). Blood glucose monitoring- an overview of current and future non-invasive devices. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14(5), 739–751. doi:10.1016/j.dsx.2020.05.016.
Swaroop, A., Bagchi, M., Preuss, H. G., & Bagchi, D. (2018). Safety and Antidiabetic Efficacy of a Novel Trigonella foenum-graecum Seed Extract. Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome, 357–364. doi:10.1016/b978-0-12-812019-4.00028-3.
Picard, M., Tauveron, I., Magdasy, S., Benichou, T., Bagheri, R., Ugbolue, U. C., Naveli, V., & Dutheil, F. (2021). Effect of exercise training on heart rate variability in type 2 diabetes mellitus patients: A systematic review and meta-analysis. PLoS ONE, 16(5 May 2021), 251863. doi:10.1371/journal.pone.0251863.
Sudre, C. H., Lee, K. A., Lochlainn, M. N., Varsavsky, T., Murray, B., Graham, M. S., Menni, C., Modat, M., Bowyer, R. C. E., Nguyen, L. H., Drew, D. A., Joshi, A. D., Ma, W., Guo, C. G., Lo, C. H., Ganesh, S., Buwe, A., Pujol, J. C., Du Cadet, J. L., … Ourselin, S. (2021). Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID symptom study app. Science Advances, 7(12), 4177. doi:10.1126/sciadv.abd4177.
Riddell, M. C., Pooni, R., Fontana, F. Y., & Scott, S. N. (2020). Diabetes Technology and Exercise. Endocrinology and Metabolism Clinics of North America, 49(1), 109–125. doi:10.1016/j.ecl.2019.10.011.
DOI: 10.28991/esj-2022-SPER-04
Refbacks
- There are currently no refbacks.