Acoustic Photometry of Biomedical Parameters for Association with Diabetes and Covid-19

Abdulrahman Imad, Noreha Abdul Malik, Belal Ahmed Hamida, Gan Hong Hong Seng, Sheroz Khan


Because of their mortality rate, diabetes and COVID-19 are serious diseases. Moreover, people with diabetes are at a higher risk of developing COVID-19 complications. This article therefore proposes a single, non-invasive system that can help people with diabetes and COVID-19 to monitor their health parameters by measuring oxygen saturation (SPO2), heart rate, and body temperature. This is in contrast to other pulse oximeters and previous work reported in the literature. A Max30102 sensor, consisting of two light-emitting diodes (LEDs), can serve as a transmission spectrum to enable three synchronous parameter measurements. Hence, the Max30102 sensor facilitates identification of the relationship between COVID-19 and diabetes in a cost-effective manner. Fifty subjects (20 healthy, 20 diabetic, and 10 with COVID-19), aged 18-61 years, were recruited to provide data on heart rate, body temperature, and oxygen saturation, measured in a variety of activities and scenarios. The results showed accuracy of ±97% for heart rate, ±98% for body temperature, and ±99% for oxygen saturation with an enhanced time efficiency of 5-7 seconds in contrast to a commercialized pulse oximeter, which took 10-12 seconds. The results were then compared with those of commercially available pulse oximetry (Oxitech Pulse Oximeter) and a thermometer (Medisana Infrared Thermometer). These results revealed that uncontrolled diabetes can be as dangerous as COVID-19 in terms of high resting heart rate and low oxygen saturation.


Doi: 10.28991/esj-2022-SPER-04

Full Text: PDF


Max30102 Sensor; Diabetes; COVID-19; Oxygen Saturation; Heart Rate; Body Temperature.


Arden, M. A., & Chilcot, J. (2020). Health psychology and the coronavirus (COVID-19) global pandemic: A call for research. British Journal of Health Psychology, 25(2), 231–232. doi:10.1111/bjhp.12414.

Our World in Data Organization. (2020). Available online: (accessed on July 2021).

Pal, R., & Bhansali, A. (2020). COVID-19, diabetes mellitus and ACE2: The conundrum. Diabetes Research and Clinical Practice, 162. doi:10.1016/j.diabres.2020.108132.

Asmat, U., Abad, K., & Ismail, K. (2016). Diabetes mellitus and oxidative stress—A concise review. Saudi Pharmaceutical Journal, 24(5), 547–553. doi:10.1016/j.jsps.2015.03.013.

Zhang, P., Zhang, X., Brown, J., Vistisen, D., Sicree, R., Shaw, J., & Nichols, G. (2010). Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Research and Clinical Practice, 87(3), 293–301. doi:10.1016/j.diabres.2010.01.026.

Pal, R., & Bhansali, A. (2020). COVID-19, diabetes mellitus and ACE2: The conundrum. Diabetes Research and Clinical Practice, 162. doi:10.1016/j.diabres.2020.108132.

Guo, W., Li, M., Dong, Y., Zhou, H., Zhang, Z., Tian, C., Qin, R., Wang, H., Shen, Y., Du, K., Zhao, L., Fan, H., Luo, S., & Hu, D. (2020). Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes/Metabolism Research and Reviews, 36(7), 3319. doi:10.1002/dmrr.3319.

Forouhi, N. G., & Wareham, N. J. (2019). Epidemiology of diabetes. Medicine (United Kingdom), 47(1), 22–27. doi:10.1016/j.mpmed.2018.10.004.

Papatheodorou, K., Papanas, N., Banach, M., Papazoglou, D., & Edmonds, M. (2016). Complications of Diabetes 2016. In Journal of Diabetes Research (Vol. 2016). doi:10.1155/2016/6989453.

Elfström, P., Sundström, J., & Ludvigsson, J. F. (2014). Systematic review with meta-analysis: Associations between coeliac disease and type 1 diabetes. Alimentary Pharmacology and Therapeutics, 40(10), 1123–1132. doi:10.1111/apt.12973.

Harding, J. L., Pavkov, M. E., Magliano, D. J., Shaw, J. E., & Gregg, E. W. (2019). Global trends in diabetes complications: a review of current evidence. Diabetologia, 62(1), 3–16. doi:10.1007/s00125-018-4711-2.

Benichou, T., Pereira, B., Mermillod, M., Tauveron, I., Pfabigan, D., Maqdasy, S., & Dutheil, F. (2018). Heart rate variability in type 2 diabetes mellitus: A systematic review and meta-analysis. PLoS ONE, 13(4), 195166. doi:10.1371/journal.pone.0195166.

Haroon, N., & Tiwana, M. I. (2017). Design and Development of Non-Invasive Prototype to Measure Pulse Rate, Blood Glucose and Oxygen Saturation Level in Arterial Blood. Future Technologies Conference (November 2017), Vancouver, Canada.

Ionescu, M. (2019). Glucometry and pulse oximetry-comparative noninvasive methods for determining blood glucose. 2019 7th E-Health and Bioengineering Conference, EHB 2019, 1–4. doi:10.1109/EHB47216.2019.8970001.

Pai, P. P., De, A., & Banerjee, S. (2017). Accuracy enhancement for noninvasive glucose estimation using dual-wavelength photoacoustic measurements and kernel-based calibration. IEEE transactions on instrumentation and measurement, 67(1), 126-136. doi:10.1109/TIM.2017.2761237.

Pai, P. P., Kumar Sanki, P., De, A., & Banerjee, S. (2015). NIR photoacoustic spectroscopy for non-invasive glucose measurement. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2015-November, 7978–7981. doi:10.1109/EMBC.2015.7320243.

Jahana, T., & Higa, H. (2020). Non-Invasive Blood Glucose Monitoring Device Using Photoacoustic Spectroscopy. ICIIBMS 2020 - 5th International Conference on Intelligent Informatics and Biomedical Sciences, 85–88. doi:10.1109/ICIIBMS50712.2020.9336413.

Nanayakkara, N. D., Munasingha, S. C., & Ruwanpathirana, G. P. (2018). Non-invasive blood glucose monitoring using a hybrid technique. MERCon 2018 - 4th International Multidisciplinary Moratuwa Engineering Research Conference, 7–12. doi:10.1109/MERCon.2018.8421885.

Balasubramanian, S., Kashyap, R., Cvn, S. T., & Anuradha, M. (2020). Hybrid Prediction Model for Type-2 Diabetes with Class Imbalance. Proceedings of the 2020 IEEE International Conference on Machine Learning and Applied Network Technologies, ICMLANT 2020, 1–6. doi:10.1109/ICMLANT50963.2020.9355975.

Gayathri, B., Sruthi, K., & Menon, K. U. (2017, April). Non-invasive blood glucose monitoring using near infrared spectroscopy. In 2017 International Conference on Communication and Signal Processing (ICCSP) (pp. 1139-1142). IEEE. doi:10.1109/ICCSP.2017.8286555.

Habibullah, M., Oninda, M. A. M., Bahar, A. N., Dinh, A., & Wahid, K. A. (2019). NIR-Spectroscopic Classification of Blood Glucose Level using Machine Learning Approach. 2019 IEEE Canadian Conference of Electrical and Computer Engineering, CCECE 2019, 1–4. doi:10.1109/CCECE.2019.8861843.

Kasahara, R., Kino, S., Soyama, S., & Matsuura, Y. (2018). Noninvasive glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers. Biomedical Optics Express, 9(1), 289. doi:10.1364/boe.9.000289.

Chen, Y., Liu, J., Pan, Z., & Shimamoto, S. (2020). Non-invasive Blood Glucose Measurement Based on mid-Infrared Spectroscopy. 2020 IEEE 17th Annual Consumer Communications and Networking Conference, CCNC 2020, 1–5. doi:10.1109/CCNC46108.2020.9045160.

Li, X., Huang, X., Mo, J., Wang, H., Huang, Q., Yang, C., Zhang, T., Chen, H. J., Hang, T., Liu, F., Jiang, L., Wu, Q., Li, H., Hu, N., & Xie, X. (2021). A Fully Integrated Closed-Loop System Based on Mesoporous Microneedles-Iontophoresis for Diabetes Treatment. Advanced Science, 8(16), 2100827. doi:10.1002/advs.202100827.

Yang, J., Li, Y., Ye, R., Zheng, Y., Li, X., Chen, Y., Xie, X., & Jiang, L. (2020). Smartphone-powered iontophoresis-microneedle array patch for controlled transdermal delivery. Microsystems and Nanoengineering, 6(1), 1–14. doi:10.1038/s41378-020-00224-z.

Bolla, A. S., & Priefer, R. (2020). Blood glucose monitoring- an overview of current and future non-invasive devices. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14(5), 739–751. doi:10.1016/j.dsx.2020.05.016.

Swaroop, A., Bagchi, M., Preuss, H. G., & Bagchi, D. (2018). Safety and Antidiabetic Efficacy of a Novel Trigonella foenum-graecum Seed Extract. Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome, 357–364. doi:10.1016/b978-0-12-812019-4.00028-3.

Picard, M., Tauveron, I., Magdasy, S., Benichou, T., Bagheri, R., Ugbolue, U. C., Naveli, V., & Dutheil, F. (2021). Effect of exercise training on heart rate variability in type 2 diabetes mellitus patients: A systematic review and meta-analysis. PLoS ONE, 16(5 May 2021), 251863. doi:10.1371/journal.pone.0251863.

Sudre, C. H., Lee, K. A., Lochlainn, M. N., Varsavsky, T., Murray, B., Graham, M. S., Menni, C., Modat, M., Bowyer, R. C. E., Nguyen, L. H., Drew, D. A., Joshi, A. D., Ma, W., Guo, C. G., Lo, C. H., Ganesh, S., Buwe, A., Pujol, J. C., Du Cadet, J. L., … Ourselin, S. (2021). Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID symptom study app. Science Advances, 7(12), 4177. doi:10.1126/sciadv.abd4177.

Riddell, M. C., Pooni, R., Fontana, F. Y., & Scott, S. N. (2020). Diabetes Technology and Exercise. Endocrinology and Metabolism Clinics of North America, 49(1), 109–125. doi:10.1016/j.ecl.2019.10.011.

Full Text: PDF

DOI: 10.28991/esj-2022-SPER-04


  • There are currently no refbacks.

Copyright (c) 2021 Sheroz Khan, Gan Hong Hong Seng, Abdulrahman Imad, Noreha Abdul Malik, Belal Ahmed Hamida