Global Metabolic Changes by Bacillus Cyclic Lipopeptide Extracts on Stress Responses of Para Rubber Leaf

Paiboon Tunsagool, Pongsakorn Kruaweangmol, Anurag Sunpapao, Arnannit Kuyyogsuy, Janthima Jaresitthikunchai, Sittiruk Roytrakul, Wanwipa Vongsangnak


Changing environmental conditions can generate abiotic stress, such as the scarcity of water and exposure to chemicals. This includes biotic stress like Phytophthora palmivora infection, which causes leaf fall disease and inhibits the growth rate of para rubber seedlings, resulting in economic loss. To prevent abiotic and biotic stresses, biocontrol agents such as cyclic lipopeptides (CLPs) from Bacillus spp. have been introduced to reduce the use of chemically synthesized fungicides and fertilizers. This study aimed to use Bacillus CLP extracts as a biological agent to stimulate the plant growth system in para rubber seedlings under stress conditions compared with the exogenous plant hormone (salicylic acid, SA). CLP extracts obtained from B. subtilis PTKU12 and exogenous SA were applied to the leaves of para rubber seedlings. The extracted metabolites from each treatment were analyzed by untargeted metabolomics for metabolite identification and metabolic networks under stress responses. In both treatments, 1,702 and 979 metabolites were detected in the positive and negative ion modes of electrospray ionization, respectively. The differential analysis revealed that the accumulation of up-regulated metabolites in the treatment of CLP extracts was higher than in the exogenous SA treatment, belonging to 56 metabolic pathways. The analysis of metabolic pathways indicated that CLP extracts employed alanine, aspartate, and glutamate metabolisms for stress responses leading to plant growth promotion. These findings revealed that the metabolic network for plant growth promotion induced by BacillusCLP extracts could be considered a protective option for para rubber plantations.


Doi: 10.28991/ESJ-2023-07-03-022

Full Text: PDF


Bacillus subtilis; Cyclic Lipopeptide Extracts; Exogenous Salicylic Acid; Para Rubber; Phytophthora palmivora.


Fox, J., & Castella, J. C. (2013). Expansion of rubber (Hevea brasiliensis) in Mainland Southeast Asia: What are the prospects for smallholders? Journal of Peasant Studies, 40(1), 155–170. doi:10.1080/03066150.2012.750605.

Li, Z., & Fox, J. M. (2012). Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data. Applied Geography, 32(2), 420–432. doi:10.1016/j.apgeog.2011.06.018.

Pornsuriya, C., Chairin, T., Thaochan, N., & Sunpapao, A. (2020). Identification and characterization of Neopestalotiopsis fungi associated with a novel leaf fall disease of rubber trees (Hevea brasiliensis) in Thailand. Journal of Phytopathology, 168(7–8), 416–427. doi:10.1111/jph.12906.

Laohasakul, B., Boonyapipat, P., & Plodpai, P. (2017). First report of Phytophthora citrophthora causing leaf fall of para rubber tree (Hevea brasiliensis) in Thailand. Plant Disease, 101(6), 1057. doi:10.1094/PDIS-07-16-0973-PDN.

Churngchow, N., & Rattarasarn, M. (2000). The elicitin secreted by Phytophthora palmivora, a rubber tree pathogen. Phytochemistry, 54(1), 33–38. doi:10.1016/S0031-9422(99)00530-0.

Krishnan, A., Joseph, L., & Roy, C. B. (2019). An insight into Hevea - Phytophthora interaction: The story of Hevea defense and Phytophthora counter defense mediated through molecular signalling. Current Plant Biology, 17(10), 33–41. doi:10.1016/j.cpb.2018.11.009.

Saijo, Y., & Loo, E. P. (2019). Plant immunity in signal integration between biotic and abiotic stress responses. New Phytologist, 225(1), 87–104. doi:10.1111/nph.15989.

EL Sabagh, A., Islam, M. S., Hossain, A., Iqbal, M. A., Mubeen, M., Waleed, M., Reginato, M., Battaglia, M., Ahmed, S., Rehman, A., Arif, M., Athar, H.-U.-R., Ratnasekera, D., Danish, S., Raza, M. A., Rajendran, K., Mushtaq, M., Skalicky, M., Brestic, M., … Abdelhamid, M. T. (2022). Phytohormones as Growth Regulators During Abiotic Stress Tolerance in Plants. Frontiers in Agronomy, 4. doi:10.3389/fagro.2022.765068.

Deenamo, N., Kuyyogsuy, A., Khompatara, K., Chanwun, T., Ekchaweng, K., & Churngchow, N. (2018). Salicylic acid induces resistance in rubber tree against phytophthora palmivora. International Journal of Molecular Sciences, 19(7), 1883. doi:10.3390/ijms19071883.

Li, X., Riaz, M., Song, B., Liang, X., & Liu, H. (2022). Exogenous salicylic acid alleviates fomesafen toxicity by improving photosynthetic characteristics and antioxidant defense system in sugar beet. Ecotoxicology and Environmental Safety, 238, 113587. doi:10.1016/j.ecoenv.2022.113587.

dos Santos, R. M., Diaz, P. A. E., Lobo, L. L. B., & Rigobelo, E. C. (2020). Use of Plant Growth-Promoting Rhizobacteria in Maize and Sugarcane: Characteristics and Applications. Frontiers in Sustainable Food Systems, 4, 136. doi:10.3389/fsufs.2020.00136.

Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327–1350. doi:10.1007/s11274-011-0979-9.

Hashem, A., Tabassum, B., & Fathi Abd_Allah, E. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. doi:10.1016/j.sjbs.2019.05.004.

Tunsagool, P., Jutidamrongphan, W., Phaonakrop, N., Jaresitthikunchai, J., Roytrakul, S., & Leelasuphakul, W. (2019). Insights into stress responses in mandarins triggered by Bacillus subtilis cyclic lipopeptides and exogenous plant hormones upon Penicillium digitatum infection. Plant Cell Reports, 38(5), 559–575. doi:10.1007/s00299-019-02386-1.

Tunsagool, P., Ploypetch, S., Jaresitthikunchai, J., Roytrakul, S., Choowongkomon, K., & Rattanasrisomporn, J. (2021). Efficacy of cyclic lipopeptides obtained from Bacillus subtilis to inhibit the growth of Microsporum canis isolated from cats. Heliyon, 7(9), 7980. doi:10.1016/j.heliyon.2021.e07980.

Okigbo, R. N., & Osuinde, M. I. (2003). Fungal leaf spot diseases of mango (Mangifera indica L.) in Southeastern Nigeria and biological control with Bacillus subtilis. Plant Protection Science, 39(2), 70–77. doi:10.17221/3829-pps.

Widyanta Pratama, S., Sukamto, S., Nur Asyiah, L., & Vida Ervina, Y. (2013). Growth Inhibition of Cocoa Pod Rot Fungus Phytophthora palmivora byPseudomonas fluorescence and Bacillus subtilis bacteria. Pelita Perkebunan (a Coffee and Cocoa Research Journal), 29(2), 120 127. doi:10.22302/iccri.jur.pelitaperkebunan.v29i2.59.

da Fonseca, M. de C., Bossolani, J. W., de Oliveira, S. L., Moretti, L. G., Portugal, J. R., Scudeletti, D., de Oliveira, E. F., & Crusciol, C. A. C. (2022). Bacillus subtilis Inoculation Improves Nutrient Uptake and Physiological Activity in Sugarcane under Drought Stress. Microorganisms, 10(4), 809. doi:10.3390/microorganisms10040809.

Abeer, H., Abd Allah, E. F., Alqarawi, A. A., Al-Huqail, A. A., Alshalawi, S. R. M., Wirth, S., & Dilfuza, E. (2015). Impact of plant growth promoting Bacillus subtilis on growth and physiological parameters of Bassia indica (Indian bassia) grown udder salt stress. Pakistan Journal of Botany, 47(5), 1735–1741.

Qurashi, A. W., & Sabri, A. N. (2013). Osmolyte accumulation in moderately halophilic bacteria improves salt tolerance of chickpea. Pakistan Journal of Botany, 45(3), 1011–1016.

Falardeau, J., Wise, C., Novitsky, L., & Avis, T. J. (2013). Ecological and Mechanistic Insights into the Direct and Indirect Antimicrobial Properties of Bacillus subtilis Lipopeptides on Plant Pathogens. Journal of Chemical Ecology, 39(7), 869–878. doi:10.1007/s10886-013-0319-7.

Raaijmakers, J. M., De Bruijn, I., & De Kock, M. J. D. (2006). Cyclic lipopeptide production by plant-associated Pseudomonas spp.: Diversity, activity, biosynthesis, and regulation. Molecular Plant-Microbe Interactions, 19(7), 699–710. doi:10.1094/MPMI-19-0699.

Kawagoe, Y., Shiraishi, S., Kondo, H., Yamamoto, S., Aoki, Y., & Suzuki, S. (2015). Cyclic lipopeptide iturin A structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways. Biochemical and Biophysical Research Communications, 460(4), 1015–1020. doi:10.1016/j.bbrc.2015.03.143.

Waewthongrak, W., Leelasuphakul, W., & McCollum, G. (2014). Cyclic Lipopeptides from Bacillus subtilis ABS–S14 Elicit Defense-Related Gene Expression in Citrus Fruit. PLoS ONE, 9(10), e109386. doi:10.1371/journal.pone.0109386.

Wang, Y., Liang, J., Zhang, C., Wang, L., Gao, W., & Jiang, J. (2020). Bacillus megaterium WL-3 Lipopeptides Collaborate Against Phytophthora infestans to Control Potato Late Blight and Promote Potato Plant Growth. Frontiers in Microbiology, 11, 1602. doi:10.3389/fmicb.2020.01602.

Umar, A., Zafar, A., Wali, H., Siddique, M. P., Qazi, M. A., Naeem, A. H., Malik, Z. A., & Ahmed, S. (2021). Low-cost production and application of lipopeptide for bioremediation and plant growth by Bacillus subtilis SNW3. AMB Express, 11(1), 165. doi:10.1186/s13568-021-01327-0.

Kumar, R., Bohra, A., Pandey, A. K., Pandey, M. K., & Kumar, A. (2017). Metabolomics for plant improvement: Status and prospects. Frontiers in Plant Science, 8, 1302. doi:10.3389/fpls.2017.01302.

Lee, S., Oh, D. G., Singh, D., Lee, J. S., Lee, S., & Lee, C. H. (2020). Exploring the metabolomic diversity of plant species across spatial (leaf and stem) components and phylogenic groups. BMC Plant Biology, 20(1), 39. doi:10.1186/s12870-019-2231-y.

Tunsagool, P., Wang, X., Leelasuphakul, W., Jutidamrongphan, W., Phaonakrop, N., Jaresitthikunchai, J., Roytrakul, S., Chen, G., & Li, L. (2019). Metabolomic study of stress responses leading to plant resistance in mandarin fruit mediated by preventive applications of Bacillus subtilis cyclic lipopeptides. Postharvest Biology and Technology, 156, 110946. doi:10.1016/j.postharvbio.2019.110946.

Mahmood, A., & Kataoka, R. (2020). Metabolite profiling reveals a complex response of plants to application of plant growth-promoting endophytic bacteria. Microbiological Research, 234, 126421. doi:10.1016/j.micres.2020.126421.

Leelasuphakul, W., Hemmanee, P., & Chuenchitt, S. (2008). Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biology and Technology, 48(1), 113–121. doi:10.1016/j.postharvbio.2007.09.024.

Gamliel, A., Katan, J., & Cohen, E. (1989). Toxicity of chloronitrobenzenes to Fusarium oxysporum and rhizoctonia solani as related to their structure. Phytoparasitica, 17(2), 101–106. doi:10.1007/BF02979517.

McKeen, C. D. (1986). Production and Partial Characterization of Antifungal Substances Antagonistic to Monilinia fructicola from Bacillus subtilis. Phytopathology, 76(2), 136. doi:10.1094/phyto-76-136.

Tunsagool, P., Leelasuphakul, W., Jaresitthikunchai, J., Phaonakrop, N., Roytrakul, S., & Jutidamrongphan, W. (2019). Targeted transcriptional and proteomic studies explicate specific roles of Bacillus subtilis iturin A, fengycin, and surfactin on elicitation of defensive systems in mandarin fruit during stress. PLOS ONE, 14(5), e0217202. doi:10.1371/journal.pone.0217202.

Olila, D., Olwa-Odyek, & Opuda-Asibo, J. (2001). Antibacterial and antifungal activities of extracts of Zanthoxylum chalybeum and Warburgia ugandensis, Ugandan medicinal plants. African Health Sciences, 1(2), 66–72.

Sunpapao, A., & Pornsuriya, C. (2014). Effects of chitosan treatments on para rubber leaf fall disease caused by Phytophthora palmivora Butler - a laboratory study. Songklanakarin Journal of Science and Technology, 36(5), 507–512.

Picman, A. K., Schneider, E. F., & Gershenzon, J. (1990). Antifungal activities of sunflower terpenoids. Biochemical Systematics and Ecology, 18(5), 325–328. doi:10.1016/0305-1978(90)90005-Z.

Peng, J., Guo, K., Xia, J., Zhou, J., Yang, J., Westaway, D., Wishart, D. S., & Li, L. (2014). Development of isotope labeling liquid chromatography mass spectrometry for mouse urine metabolomics: Quantitative metabolomic study of transgenic mice related to Alzheimer’s disease. Journal of Proteome Research, 13(10), 4457–4469. doi:10.1021/pr500828v.

Wu, L., Han, Y., Zheng, Z., Peng, G., Liu, P., Yue, S., Zhu, S., Chen, J., Lv, H., Shao, L., Sheng, Y., Wang, Y., Li, L., Li, L., & Wang, B. (2021). Altered Gut Microbial Metabolites in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease: Signals in Host–Microbe Interplay. Nutrients, 13(1), 228. doi:10.3390/nu13010228.

Li, L., Li, R., Zhou, J., Zuniga, A., Stanislaus, A. E., Wu, Y., Huan, T., Zheng, J., Shi, Y., Wishart, D. S., & Lin, G. (2013). MyCompoundID: Using an evidence-based metabolome library for metabolite identification. Analytical Chemistry, 85(6), 3401–3408. doi:10.1021/ac400099b.

Pang, Z., Zhou, G., Ewald, J., Chang, L., Hacariz, O., Basu, N., & Xia, J. (2022). Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nature Protocols, 17(8), 1735–1761. doi:10.1038/s41596-022-00710-w.

Mahapatra, S., Yadav, R., & Ramakrishna, W. (2022). Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. Journal of Applied Microbiology, 132(5), 3543–3562. doi:10.1111/jam.15480.

Wibowo, A. M., Joko, T., Subandiyah, S., & Kageyama, K. (2020). Antagonistic Potential of Endophytic Bacteria Against Phytophthora palmivora Causing Black Pod Rot Disease on Cacao (Theobroma cacao L.) In Indonesia. Plant Pathology Journal, 19(1), 22–41. doi:10.3923/ppj.2020.22.41.

Eileen Rizlan Ross, E., Hamzah, A., & Syaidatul Aqma, W. (2019). Endophytic bacteria from Theobroma cacao L. with antifungal activities against Phytophthora palmivora. Asian Journal of Agriculture and Biology, 7(3), 404-411.

Chung, S., Kong, H., Buyer, J. S., Lakshman, D. K., Lydon, J., Kim, S. D., & Roberts, D. P. (2008). Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Applied Microbiology and Biotechnology, 80(1), 115–123. doi:10.1007/s00253-008-1520-4.

Kang, B. R., Park, J. S., & Jung, W. J. (2020). Antifungal evaluation of fengycin isoforms isolated from Bacillus amyloliquefaciens PPL against Fusarium oxysporum f. sp. lycopersici. Microbial Pathogenesis, 149, 104509. doi:10.1016/j.micpath.2020.104509.

Sur, S., Romo, T. D., & Grossfield, A. (2018). Selectivity and Mechanism of Fengycin, an Antimicrobial Lipopeptide, from Molecular Dynamics. Journal of Physical Chemistry B, 122(8), 2219–2226. doi:10.1021/acs.jpcb.7b11889.

Jiang, C., Li, Z., Shi, Y., Guo, D., Pang, B., Chen, X., Shao, D., Liu, Y., & Shi, J. (2020). Bacillus subtilis inhibits Aspergillus carbonarius by producing iturin A, which disturbs the transport, energy metabolism, and osmotic pressure of fungal cells as revealed by transcriptomics analysis. International Journal of Food Microbiology, 330, 108783. doi:10.1016/j.ijfoodmicro.2020.108783.

Krishnan, N., Velramar, B., & Velu, R. K. (2019). Investigation of antifungal activity of surfactin against mycotoxigenic phytopathogenic fungus Fusarium moniliforme and its impact in seed germination and mycotoxicosis. Pesticide Biochemistry and Physiology, 155, 101–107. doi:10.1016/j.pestbp.2019.01.010.

Fei, D., Liu, F. F., Gang, H. Z., Liu, J. F., Yang, S. Z., Ye, R. Q., & Mu, B. Z. (2020). A new member of the surfactin family produced by Bacillus subtilis with low toxicity on erythrocyte. Process Biochemistry, 94(7), 164–171. doi:10.1016/j.procbio.2020.04.022.

Lin, N., Wang, C., Ding, J., Su, L., Xu, L., Zhang, B., Zhang, Y., & Fan, J. (2020). Efficacy of nanoparticle encapsulation on suppressing oxidation and enhancing antifungal activity of cyclic lipopeptides produced by Bacillus subtilis. Colloids and Surfaces B: Biointerfaces, 193(8), 111143. doi:10.1016/j.colsurfb.2020.111143.

Gong, A. D., Li, H. P., Yuan, Q. S., Song, X. S., Yao, W., He, W. J., Zhang, J. B., & Liao, Y. C. (2015). Antagonistic mechanism of iturin a and plipastatin a from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS ONE, 10(2), 116871. doi:10.1371/journal.pone.0116871.

Shahid, I., Han, J., Hanooq, S., Malik, K. A., Borchers, C. H., & Mehnaz, S. (2021). Profiling of Metabolites of Bacillus spp. and Their Application in Sustainable Plant Growth Promotion and Biocontrol. Frontiers in Sustainable Food Systems, 5, 605195. doi:10.3389/fsufs.2021.605195.

Hu, Y., Chai, Q., Wang, Y., Chen, Y., Dong, H., Shen, J., Qi, Y., Yu, H., Wang, F., & Wen, Q. (2022). Effects of Heat Stress and Exogenous Salicylic Acid on Secondary Metabolites Biosynthesis in Pleurotus ostreatus (Jacq.) P. Kumm. Life, 12(6), 915. doi:10.3390/life12060915.

Wang, J., Guo, R., Wang, W., Ma, G., & Li, S. (2018). Insight into the surfactin production of Bacillus velezensis B006 through metabolomics analysis. Journal of Industrial Microbiology and Biotechnology, 45(12), 1033–1044. doi:10.1007/s10295-018-2076-7.

Sun, Y. L., & Hong, S. K. (2010). Effects of plant growth regulators and l-glutamic acid on shoot organogenesis in the halophyte Leymus chinensis (Trin.). Plant Cell, Tissue and Organ Culture, 100(3), 317–328. doi:10.1007/s11240-009-9653-4.

Kaspal, M., Kanapaddalagamage, M. H., & Ramesh, S. A. (2021). Emerging roles of γ aminobutyric acid (Gaba) gated channels in plant stress tolerance. Plants, 10(10), 2178. doi:10.3390/plants10102178.

Zhang, Y., & Fernie, A. R. (2018). On the role of the tricarboxylic acid cycle in plant productivity. Journal of Integrative Plant Biology, 60(12), 1199–1216. doi:10.1111/jipb.12690.

Han, M., Zhang, C., Suglo, P., Sun, S., Wang, M., & Su, T. (2021). L-aspartate: An essential metabolite for plant growth and stress acclimation. Molecules, 26(7), 1887. doi:10.3390/molecules26071887.

Parthasarathy, A., Savka, M. A., & Hudson, A. O. (2019). The synthesis and role of β-alanine in plants. Frontiers in Plant Science, 10, 921. doi:10.3389/fpls.2019.00921.

Kan, C. C., Chung, T. Y., Juo, Y. A., & Hsieh, M. H. (2015). Glutamine rapidly induces the expression of key transcription factor genes involved in nitrogen and stress responses in rice roots. BMC Genomics, 16(1), 731. doi:10.1186/s12864-015-1892-7.

Daley, L. S., & Bidwell, R. G. S. (1977). Phosphoserine and Phosphohydroxypyruvic Acid. Plant Physiology, 60(1), 109–114. doi:10.1104/pp.60.1.109.

Kishor, P. B. K., Suravajhala, R., Rajasheker, G., Marka, N., Shridhar, K. K., Dhulala, D., Scinthia, K. P., Divya, K., Doma, M., Edupuganti, S., Suravajhala, P., & Polavarapu, R. (2020). Lysine, Lysine-Rich, Serine, and Serine-Rich Proteins: Link Between Metabolism, Development, and Abiotic Stress Tolerance and the Role of ncRNAs in Their Regulation. Frontiers in Plant Science, 11, 546213. doi:10.3389/fpls.2020.546213.

Mohammadipour, N., & Souri, M. K. (2019). Beneficial effects of glycine on growth and leaf nutrient concentrations of coriander (Coriandrum sativum) plants. Journal of Plant Nutrition, 42(14), 1637–1644. doi:10.1080/01904167.2019.1628985.

Muthuramalingam, P., Krishnan, S. R., Pandian, S., Mareeswaran, N., Aruni, W., Pandian, S. K., & Ramesh, M. (2018). Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Scientific Reports, 8(1), 9270. doi:10.1038/s41598-018-27703-8.

Bui, D., Ravasz, D., & Chinopoulos, C. (2019). The Effect of 2-Ketobutyrate on Mitochondrial Substrate-Level Phosphorylation. Neurochemical Research, 44(10), 2301–2306. doi:10.1007/s11064-019-02759-8.

Rhodes, D., & Hanson, A. D. (1993). Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 44(1), 357–384. doi:10.1146/annurev.pp.44.060193.002041.

Sakamoto, A., & Murata, N. (2000). Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. Journal of Experimental Botany, 51(342), 81–88. doi:10.1093/jexbot/51.342.81.

Kataoka, R., Akashi, M., Taniguchi, T., Kinose, Y., Yaprak, A. E., & Turgay, O. C. (2021). Metabolomics analyses reveal metabolites affected by plant growth–promoting endophytic bacteria in roots of the halophyte mesembryanthemum crystallinum. International Journal of Molecular Sciences, 22(21), 11813. doi:10.3390/ijms222111813.

Abbas, S. H., Sohail, M., Saleem, M., Mahmood, T., Aziz, I., Qamar, M., Majeed, A., & Arif, M. (2013). Effect of L-Tryptophan on Plant Weight and Pod Weight in Chickpea Under Rainfed Conditions. Science, Technology and Development, 32(4), 277–280.

Full Text: PDF

DOI: 10.28991/ESJ-2023-07-03-022


  • There are currently no refbacks.

Copyright (c) 2023 Paiboon Tunsagool, Pongsakorn Kruaweangmol, Anurag Sunpapao, Arnannit Kuyyogsuy, Janthima Jaresitthikunchai, Sittiruk Roytrakul, Wanwipa Vongsangnak