Prioritizing Barriers and Strategies Mapping in Business Intelligence Projects Using Fuzzy AHP TOPSIS Framework in Developing Country
Abstract
Doi: 10.28991/ESJ-2022-06-02-010
Full Text: PDF
Keywords
References
Božič, K., & Dimovski, V. (2019). Business intelligence and analytics for value creation: The role of absorptive capacity. International Journal of Information Management, 46, 93–103. doi:10.1016/j.ijinfomgt.2018.11.020.
Wieder, B., & Ossimitz, M. L. (2015). The Impact of Business Intelligence on the Quality of Decision Making - A Mediation Model. Procedia Computer Science, 64, 1163–1171. doi:10.1016/j.procs.2015.08.599.
Dehghan, A., Mehrabi, A., & Fotouhi, N. (2013). The necessity of establishing Business Intelligence competency centers for achievement of BI projects. In IKT 2013 - 2013 5th Conference on Information and Knowledge Technology, 242–247. doi:10.1109/IKT.2013.6620072.
Ain, N. U., Vaia, G., DeLone, W. H., & Waheed, M. (2019). Two decades of research on business intelligence system adoption, utilization and success – A systematic literature review. Decision Support Systems, 125(June 2019), 113113. doi:10.1016/j.dss.2019.113113.
Cognini, R., Corradini, F., Polzonetti, A., & Re, B. (2014). Five factors that make pervasive business intelligence a winning wager. In IEEE International Conference on Industrial Engineering and Engineering Management, Vols. 2015-January, 617–621. doi:10.1109/IEEM.2014.7058712.
Gartner. (2015). Gartner Survey Shows More Than 75 Percent of Companies Are Investing or Planning to Invest in Big Data in the Next Two Years. Gartner, 1–2.
Bordeleau, F. E., Mosconi, E., & de Santa-Eulalia, L. A. (2020). Business intelligence and analytics value creation in Industry 4.0: a multiple case study in manufacturing medium enterprises. Production Planning and Control, 31(2–3), 173–185. doi:10.1080/09537287.2019.1631458.
Kursan, I., & Mihić, M. (2010). Business intelligence: The role of the internet in marketing research and business decision-making. Management : Journal of Contemporary Management Issues, 15(1), 69–86.
Caseiro, N., & Coelho, A. (2019). The influence of Business Intelligence capacity, network learning and innovativeness on startups performance. Journal of Innovation and Knowledge, 4(3), 139–145. doi:10.1016/j.jik.2018.03.009.
Williams, S., & Williams, N. (2007). The Profit Impact of Business Intelligence. In The Profit Impact of Business Intelligence. doi:10.1016/B978-0-12-372499-1.X5000-5.
Kwak. Y. H. (2002). Critical Success Factors in International Development Project Management. CIB 10th International Symposium Construction Innovation & global Competitiveness, September 9-13, Cincinnati, Ohio, USA.
Stamford, C. (2014). Gartner Says Worldwide Business Intelligence and Analytics Software Market Grew 8 Percent in 2013. In Gardner. Available online: http://www.forbes.com/sites/louiscolumbus/2014/04/29/2013-business-intelligence-and-analytics-market-share-update-sap-continues-market-leadership/ (accessed on December 2021).
Llave, M. R. (2017). Business Intelligence and Analytics in Small and Medium-sized Enterprises: A Systematic Literature Review. Procedia Computer Science, 121, 194–205. doi:10.1016/j.procs.2017.11.027.
Tutunea, M. F. (2015). Business Intelligence Solutions for Mobile Devices – An Overview. Procedia Economics and Finance, 27(15), 160–169. doi:10.1016/s2212-5671(15)00985-5.
Peter Mesároš, Štefan Čarnický, & Tomáš Mandičák. (2015). Key Factors and Barriers of Business Intelligence Implementation. US-China Law Review, 12(2). doi:10.17265/1548-6605/2015.02.006.
Williams, S. (2011). 5 Barriers to BI Success and how to overcome them. Strategic Finance, Montvale, 93(1), 27-33.
Kusumawardani, R. P., & Agintiara, M. (2015). Application of Fuzzy AHP-TOPSIS Method for Decision Making in Human Resource Manager Selection Process. Procedia Computer Science, 72, 638–646. doi:10.1016/j.procs.2015.12.173.
Rajak, M., & Shaw, K. (2019). Evaluation and selection of mobile health (mHealth) applications using AHP and fuzzy TOPSIS. Technology in Society, 59, 101186. doi:10.1016/j.techsoc.2019.101186.
Sirisawat, P., & Kiatcharoenpol, T. (2018). Fuzzy AHP-TOPSIS approaches to prioritizing solutions for reverse logistics barriers. Computers and Industrial Engineering, 117, 303–318. doi:10.1016/j.cie.2018.01.015.
Saghafian, S., & Hejazi, S. R. (2005). Multi-criteria group decision making using a modified fuzzy TOPSIS procedure. In Proceedings - International Conference on Computational Intelligence for Modelling, Control and Automation, CIMCA and Conference on Intelligent Agents, Web Technologies and Internet Vol. 2, 215–220. doi:10.1109/cimca.2005.1631471.
Sun, C. C. (2010). A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods. Expert Systems with Applications, 37(12), 7745–7754. doi:10.1016/j.eswa.2010.04.066.
Grublješič, T., Coelho, P. S., & Jaklič, J. (2019). The shift to socio-organizational drivers of business intelligence and analytics acceptance. Journal of Organizational and End User Computing, 31(2), 37–62. doi:10.4018/JOEUC.2019040103.
Ferrissa, W. (2017). 500 Perusahaan Terdaftar sebagai e-Commerce Terpercaya di Kominfo. Kementerian Komunikasi dan Informatika RI, Indonesia. Available online: https://www.kominfo.go.id/content/detail/11909/500-perusahaan-terdaftar-sebagai-e-commerce-terpercaya-di-kominfo/0/sorotan_media (accessed on December 2021).
The World Bank. (2021). The World Bank In Indonesia, Available online: https://www.worldbank.org/en/country/indonesia/ overview#1 (accessed on November 2021).
The World Bank. (2020). Individuals using the Internet (% of population). Available online: https://data.worldbank.org /indicator/ IT.NET.USER.ZS?locations=ID (accessed on November 2021).
World Economic Situation and Prospects (2014). Country classification: Data sources, country classifications and aggregation methodology. Available online: https://www.un.org/en/development/desa/policy/wesp/wesp_current/2014wesp_country_ classification.pdf (accessed on December 2021).
Kompas.com (2008). Solusi Business Intelligence Rambah Sektor Publik. Available online: https://tekno.kompas.com/read/2008/02/14/22153530/Solusi.Business.Intelligence.Rambah.Sektor.Publik (accessed on December 2021).
Yeoh, W., & Koronios, A. (2010). Critical success factors for business intelligence systems. Journal of Computer Information Systems, 50(3), 23–32. doi:10.1080/08874417.2010.11645404.
Olszak, C. M., & Ziemba, E. (2012). Critical success factors for implementing business intelligence systems in small and medium enterprises on the example of Upper Silesia, Poland. Interdisciplinary Journal of Information, Knowledge, and Management, 7, 129–150. doi:10.28945/1584.
Fortune, J., & White, D. (2006). Framing of project critical success factors by a systems model. International Journal of Project Management, 24(1), 53–65. doi:10.1016/j.ijproman.2005.07.004.
Wise, L. (2007). Five Steps to Business Intelligence Project Success. Technology Evaluation Center, Quebec, Canada.
Dawson, L., & Van Belle, J.-P. (2013). Critical success factors for business intelligence in the South African financial services sector. SA Journal of Information Management, 15(1). doi:10.4102/sajim.v15i1.545.
Wayne W. Eckerson. (2002). Data Quality and the Bottom Line: Achieving Business Success through a Commitment to High Quality Data. The data Warehouse Institute (TDWI), California, United States.
Boyer, J., Frank, B., Green, B., & Harris, T. (2010). A Practical Guide for Achieving BI Excellence. MC Press Online, Idaho, United States.
Ali Khan, A. M., Amin, N., & Lambrou, N. (2010). Drivers and Barriers to Business intelligence adoption: A case of Pakistan. In Proceedings of the European, Mediterranean and Middle Eastern Conference on Information Systems: Global Information Systems Challenges in Management, EMCIS 2010.
Lennerholt, C., Van Laere, J., & Söderström, E. (2020). User-Related Challenges of Self-Service Business Intelligence. Information Systems Management, 38(4), 309–323. doi:10.1080/10580530.2020.1814458.
Jalil, N. A., & Hwang, H. J. (2019). Technological-centric business intelligence: Critical success factors. International Journal of Innovation, Creativity and Change, 5(2), 1499–1516.
Jahantigh, F. F., Habibi, A., & Sarafrazi, A. (2019). A conceptual framework for business intelligence critical success factors. International Journal of Business Information Systems, 30(1), 109–123. doi:10.1504/IJBIS.2019.097058.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. doi:10.1016/S0019-9958(65)90241-X.
Dernoncourt, F. (2013). Introduction to fuzzy logic. Massachusetts Institute of Technology (MIT), Massachusetts, United States.
Ordoobadi, S. M. (2009). Development of a supplier selection model using fuzzy logic. Supply Chain Management, 14(4), 314–327. doi:10.1108/13598540910970144.
Patil, S. K., & Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ranking the solutions of Knowledge Management adoption in Supply Chain to overcome its barriers. Expert Systems with Applications, 41(2), 679–693. doi:10.1016/j.eswa.2013.07.093.
Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. doi:10.1016/0377-2217(90)90057-I.
Kahraman, C., Ruan, D., & Doǧan, I. (2003). Fuzzy group decision-making for facility location selection. In Information Sciences 157(1–4), 135–153. doi:10.1016/S0020-0255(03)00183-X.
Chen, J. F., Hsieh, H. N., & Do, Q. H. (2015). Evaluating teaching performance based on fuzzy AHP and comprehensive evaluation approach. Applied Soft Computing Journal, 28, 100–108. doi:10.1016/j.asoc.2014.11.050.
Baylan, E. B. (2020). A Novel Project Risk Assessment Method Development via AHP-TOPSIS Hybrid Algorithm. Emerging Science Journal, 4(5), 390–410. doi:10.28991/esj-2020-01239.
Hwang, C.-L., & Yoon, K. (1981). Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin, Germany. doi:10.1007/978-3-642-48318-9.
Mamaghani, N. D., Samizadeh, R., & Saghafi, F. (2010). Customized Knowledge Management Success Factors for Iranian Organizations. Proceedings of Knowledge Management 5th International Conference 2010, Bucharest, Romania, 335–341.
Kabra, G., Ramesh, A., & Arshinder, K. (2015). Identification and prioritization of coordination barriers in humanitarian supply chain management. International Journal of Disaster Risk Reduction, 13, 128–138. doi:10.1016/j.ijdrr.2015.01.011.
Eckerson, W. (2005). The Keys to Enterprise Business Intelligence: Critical Success Factors. TDWI Report, 1–15. Available online: http://download.101com.com/pub/TDWI/Files/TDWIMonograph2-BO.pdf (accessed on December 2021).
Passlick, J., Guhr, N., Lebek, B., & Breitner, M. H. (2020). Encouraging the use of self-service business intelligence–an examination of employee-related influencing factors. Journal of Decision Systems, 29(1), 1–26. doi:10.1080/12460125.2020.1739884.
Nidhra, S., Yanamadala, M., Afzal, W., & Torkar, R. (2013). Knowledge transfer challenges and mitigation strategies in global software development—A systematic literature review and industrial validation. International Journal of Information Management, 33(2), 333–355. doi:10.1016/j.ijinfomgt.2012.11.004.
Scannapieco, M. (2006). Data Quality: Concepts, Methodologies and Techniques. Data-Centric Systems and Applications. Springer-Verlag, Berlin, Germany.
Teixeira, A., Oliveira, T., & Varajão, J. (2019). Evaluation of Business Intelligence Projects Success - a Case Study. Business Systems Research, 10(1), 1–12. doi:10.2478/bsrj-2019-0001.
DOI: 10.28991/ESJ-2022-06-02-010
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Ika Chandra Hapsari