Investigating High School Student Misconceptions: A Rasch-Based Three-Level Diagnostic Evaluation of Osmoregulation and Excretion Systems
Downloads
This study aimed to develop and validate a three-tier multiple-choice diagnostic assessment instrument to identify misconceptions related to osmoregulation and the excretion system among Indonesian high school students. A total of 281 students from West Sumatra and Jambi Province participated in the research. Employing a quantitative approach, the psychometric properties of a 20-item test were analyzed using Rasch modeling. The analysis revealed that the instrument had strong item reliability (0.84), though person reliability was relatively low (0.55), indicating variability in students’ response consistency. Despite this, the test demonstrated high internal consistency, as shown by a Cronbach's Alpha of 0.90. The mean student ability level (-2.37) was significantly lower than the item difficulty level (0.00), suggesting widespread conceptual gaps among participants. All items met the model’s expectations, with average Outfit Mean Square (MNSQ) at 1.02 and Z-Standard at 0.1. The findings highlight the diagnostic tool’s effectiveness in detecting prevalent misconceptions in biology education. This study contributes to the field by offering a structured and psychometrically sound instrument, supporting more targeted instructional strategies to enhance conceptual understanding in science education.
Downloads
[1] Mapulanga, T., & Bwalya, A. (2025). Gender Differences in Secondary School Students’ Perceptions of Teaching Practices Used in Biology Classrooms. African Journal of Research in Mathematics, Science and Technology Education, 29(1), 42–53. doi:10.1080/18117295.2024.2444793.
[2] Lim, H. L., & Poo, Y. P. (2021). Diagnostic test to assess misconceptions on photosynthesis and plant respiration: Is it valid and reliable? Jurnal Pendidikan IPA Indonesia, 10(2), 241–252. doi:10.15294/jpii.v10i2.26944.
[3] Enochson, P. G., Redfors, A., Dempster, E. R., & Tibell, L. A. E. (2015). Ideas about the human body among secondary students in South Africa. African Journal of Research in Mathematics, Science and Technology Education, 19(2), 199–211. doi:10.1080/10288457.2015.1050804.
[4] Aydın, S. (2016). To what extent do Turkish high school students know about their body organs and organ systems? International Journal of Human Sciences, 13(1), 1094. doi:10.14687/ijhs.v13i1.3498.
[5] Ameyaw, Y., & Okyer, M. (2018). Concept mapping instruction as an activator of students’ performance in the teaching and learning of excretion. Annals of Reviews and Research, 1(4), 93-102. doi:10.19080/arr.2018.01.555568.
[6] Assem, H. D., Nartey, L., Appiah, E., & Aidoo, J. K. (2023). A Review of Students’ Academic Performance in Physics: Attitude, Instructional Methods, Misconceptions and Teachers Qualification. European Journal of Education and Pedagogy, 4(1), 84–92. doi:10.24018/ejedu.2023.4.1.551.
[7] Kibirige, I., & Mamashela, D. (2022). Learners’ prevalent misconceptions about force and experiences of flipped classes. Journal for the Education of Gifted Young Scientists, 10(1), 109–120. doi:10.17478/jegys.1058677.
[8] Reichert, C., Cervato, C., Niederhauser, D., & Larsen, M. D. (2015). Understanding atmospheric carbon budgets: Teaching students conservation of mass. Journal of Geoscience Education, 63(3), 222–232. doi:10.5408/14-055.1.
[9] Uzunhasanoğlu, Ö., Çakır, M., & Avcı, S. (2020). Developing and Implementing Two-Stage Diagnostic Test to Measure the Concept Concepts of Biology Teacher Candidates. Turkish Studies-Educational Sciences, 15(4), 2407–2423. doi:10.47423/turkishstudies.44131. (In Turkish).
[10] usilaningsih, E., Aprilia, N., & Kristiansi, F. (2023). Misconception analysis of sub-microscopic level in chemistry learning of reaction rate using three-tier multiple-choice test (TTMCT) for class XI students. International Conference on Applied Computational Intelligence and Analytics (ACIA-2022), 2705, 030008. doi:10.1063/5.0125980.
[11] Kirbulut, Z. D., & Geban, O. (2014). Using three-tier diagnostic test to assess students’ misconceptions of states of matter. Eurasia Journal of Mathematics, Science and Technology Education, 10(5), 509–521. doi:10.12973/eurasia.2014.1128a.
[12] Karataş, A. (2020). Preservice Science Teachers’ Misconceptions About Evolution. Journal of Education and Training Studies, 8(2), 38. doi:10.11114/jets.v8i2.4690.
[13] Machová, M., & Ehler, E. (2023). Secondary school students’ misconceptions in genetics: origins and solutions. Journal of Biological Education, 57(3), 633–646. doi:10.1080/00219266.2021.1933136.
[14] Çakmak, T., & Bulunuz, N. (2022). Teaching Seventh Graders About the Digestive System Using Formative Assessment to Evaluate Comprehension Levels. Academy Journal of Educational Sciences, 6(1), 59–67. doi:10.31805/acjes.1116921.
[15] Çuçin, A., Özgür, S., & Güngör Cabbar, B. (2020). Comparison of Misconceptions about Human Digestive System of Turkish, Albanian and Bosnian 12th Grade High School Students. World Journal of Education, 10(3), 148. doi:10.5430/wje.v10n3p148.
[16] Kummer, T. A., Whipple, C. J., & Jensen, J. L. (2016). Prevalence and Persistence of Misconceptions in Tree Thinking. Journal of Microbiology & Biology Education, 17(3), 389–398. doi:10.1128/jmbe.v17i3.1156.
[17] Tennant, A., McKenna, S. P., & Hagell, P. (2004). Application of Rasch Analysis in the Development and Application of Quality of Life Instruments. Value in Health, 7, S22–S26. doi:10.1111/j.1524-4733.2004.7s106.x.
[18] Andrich, D. (2011). Rasch Models for Measurement. Rasch Models for Measurement. SAGE Publications, Thousand Oaks, United States. doi:10.4135/9781412985598.
[19] Lu, Y. M., Wu, Y. Y., Hsieh, C. L., Lin, C. L., Hwang, S. L., Cheng, K. I., & Lue, Y. J. (2013). Measurement precision of the disability for back pain scale-by applying Rasch analysis. Health and Quality of Life Outcomes, 11(1), 119. doi:10.1186/1477-7525-11-119.
[20] Aryadoust, V., Tan, H. A. H., & Ng, L. Y. (2019). A scientometric review of rasch measurement: The rise and progress of a specialty. Frontiers in Psychology, 10(Oct), 02197. doi:10.3389/fpsyg.2019.02197.
[21] Ma, H., Liu, W., & Li, G. (2025). Development and Application of a Five-Tier Diagnostic Test to Assess Misconceptions on Respiration and Photosynthesis among Senior High School Students in Mainland China. Research in Science Education, 4. doi:10.1007/s11165-025-10232-6.
[22] Zhong, J., Ma, H. Y., Wang, X. M., Huang, X. J., & Xu, M. Z. (2023). Rasch analysis of the Chinese version of the clinically useful depression outcome scale in patients with major depressive disorder. BMC Psychology, 11(1), 1–9,. doi:10.1186/s40359-023-01255-7.
[23] Salzberger, T., & Sinkovics, R. R. (2006). Reconsidering the problem of data equivalence in international marketing research: Contrasting approaches based on CFA and the Rasch model for measurement. International Marketing Review, 23(4), 390–417. doi:10.1108/02651330610678976.
[24] Farlie, M., Johnson, C., Wilkinson, T., & Keating, J. (2021). Refining assessment: Rasch analysis in health professional education and research. Focus on Health Professional Education: A Multi-Professional Journal, 22(2), 88–104. doi:10.11157/fohpe.v22i2.569.
[25] Raja, P., Setiadi, B., & Abdurrahman, A. (2019). Developing and Validating an Instrument of In-service Teachers Responses to Knowledge-Based Teacher, Engagement, and Expectation in Teacher Profession Education Program in Indonesia: Integrating factor analysis with Rasch modeling. Proceedings of the International Conference on Educational Sciences and Teacher Profession (ICETeP 2018), 74. doi:10.2991/icetep-18.2019.74.
[26] Long, C., Bansilal, S., & Debba, R. (2014). An investigation of mathematical literacy assessment supported by an application of rasch measurement. Pythagoras, 35(1), 1–17. doi:10.4102/pythagoras.v35i1.235.
[27] Rowe, V. T., Winstein, C. J., Wolf, S. L., & Woodbury, M. L. (2017). Functional Test of the Hemiparetic Upper Extremity: A Rasch Analysis With Theoretical Implications. Archives of Physical Medicine and Rehabilitation, 98(10), 1977–1983. doi:10.1016/j.apmr.2017.03.021.
[28] Taslidere, E. (2016). Development and use of a three-tier diagnostic test to assess high school students’ misconceptions about the photoelectric effect. Research in Science & Technological Education, 34(2), 164–186. doi:10.1080/02635143.2015.1124409.
[29] Laliyo, L. A. R., La Kilo, A., Paputungan, M., Kunusa, W. R., Dama, L., & Panigoro, C. (2022). Rasch Modelling To Evaluate Reasoning Difficulties, Changes of Responses, and Item Misconception Pattern of Hydrolysis. Journal of Baltic Science Education, 21(5), 817–835. doi:10.33225/jbse/22.21.817.
[30] Amiruddin, M. Z. B., Samsudin, A., Suhandi, A., & Costu, B. (2024). Bibliometric investigation in misconceptions and conceptual change over three decades of science education. International Journal of Educational Methodology, 10(3), 367-385. doi:10.12973/ijem.10.3.367.
[31] Boone, W. J. (2016). Rasch analysis for instrument development: Why,when,and how? CBE Life Sciences Education, 15(4), 1-7. doi:10.1187/cbe.16-04-0148.
[32] Ginther, D. K., Kahn, S., & Schaffer, W. T. (2016). Gender, race/ethnicity, and national institutes of health R01 research awards: Is there evidence of a double bind for women of color’. Academic Medicine, 91(8), 1098–1107. doi:10.1097/ACM.0000000000001278.
[33] Brown, A. J., & Goh, J. X. (2016). Some evidence for a gender gap in personality and social psychology. Social Psychological and Personality Science, 7(5), 437–443. doi:10.1177/1948550616644297.
[34] Arnup, J. L., Murrihy, C., Roodenburg, J., & McLean, L. A. (2013). Cognitive style and gender differences in children’s mathematics achievement. Educational Studies, 39(3), 355–368. doi:10.1080/03055698.2013.767184.
[35] Fahmi, E. F. F. El, Astutik, F., & Ibrahim, F. F. (2023). Analysis of Differential Item Functioning (DIF) on the Work-Life Balance Scale. Atlantis Press SARL, 728. doi:10.2991/978-2-38476-032-9_31.
[36] Moradi, E., Ghabanchi, Z., & Pishghadam, R. (2022). Reading comprehension test fairness across gender and mode of learning: insights from IRT-based differential item functioning analysis. Language Testing in Asia, 12(1), 39. doi:10.1186/s40468-022-00192-3.
[37] Pässler, K., Beinicke, A., & Hell, B. (2014). Gender-Related Differential Validity and Differential Prediction in Interest Inventories. Journal of Career Assessment, 22(1), 138–152. doi:10.1177/1069072713492934.
[38] Maričić, M., Đoković, A., & Jeremić, V. (2019). The validity of student evaluation of teaching: Is there a gender bias? Croatian Journal of Education, 21(3), 743–775. doi:10.15516/cje.v21i3.3177.
[39] Kuzu, Y., & Gelbal, S. (2023). Investigation of Differential Item and Step Functioning Procedures in Polytomus Items*. Journal of Measurement and Evaluation in Education and Psychology, 14(3), 200–221. doi:10.21031/epod.1221823.
[40] Twiss, J., McKenna, S. P., Graham, J., Swetz, K., Sloan, J., & Gomberg-Maitland, M. (2016). Applying Rasch analysis to evaluate measurement equivalence of different administration formats of the Activity Limitation scale of the Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR). Health and Quality of Life Outcomes, 14(1), 1–9,. doi:10.1186/s12955-016-0462-2.
[41] Hagquist, C., & Andrich, D. (2017). Recent advances in analysis of differential item functioning in health research using the Rasch model. Health and Quality of Life Outcomes, 15(1), 1–8,. doi:10.1186/s12955-017-0755-0.
[42] Astegiano, J., Sebastián-González, E., & Castanho, C. D. T. (2019). Unravelling the gender productivity gap in science: A meta-analytical review. Royal Society Open Science, 6(6), 181566. doi:10.1098/rsos.181566.
[43] Malonisio, M. O., & Malonisio, C. C. (2023). Validation of the teacher education institution’s entrance test using the Rasch model. International Journal of Innovative Research and Scientific Studies, 6(3), 644–655. doi:10.53894/ijirss.v6i3.1726.
[44] Barcelo, J. (2024). Development and Rasch Analysis of the Prior Knowledge of Chemistry Concepts Test for Pre-medical Students in the Philippines. KIMIKA, 34(2), 14–33. doi:10.26534/kimika.v34i2.14-33.
[45] Lee, S. C., Lee, Y. C., & Chiu, E. C. (2023). Psychometric validation of the Cognitive Abilities Screening Instrument using Rasch analysis in people with dementia. Medicine (United States), 102(32), E34093. doi:10.1097/MD.0000000000034093.
[46] Jimam, N. S., Ismail, N. E., Dangiwa, D. A., Dapar, M. L. P., Sariem, C. N., Paul, L. A., Mohammed, S. G., & Dayom, D. W. (2021). Use of Rasch Wright map to understand the quality of Healthcare Workers’ Knowledge, Attitudes, and Practices for Uncomplicated Malaria (HKAPIUM). Journal of Pharmacy & Bioresources, 18(3), 237–244. doi:10.4314/jpb.v18i3.8.
[47] Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one’s own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121–1134. doi:10.1037/0022-3514.77.6.1121.
[48] Kuczmann, I. (2017). The structure of knowledge and students’ misconceptions in physics. AIP Conference Proceedings, 1916, 050001. doi:10.1063/1.5017454.
[49] Swanson, H., Anton, G., Bain, C., Horn, M., Wilensky, U. (2019). Introducing and Assessing Computational Thinking in the Secondary Science Classroom. Computational Thinking Education. Springer, Singapore. doi:10.1007/978-981-13-6528-7_7.
[50] Treagust, D. F. (1993). The evolution of an approach for using analogies in teaching and learning science. Research in Science Education, 23(1), 293–301. doi:10.1007/BF02357073.
[51] Luz, M. R. M. P., Oliveira, G. A., & Poian, A. T. D. (2013). Glucose as the sole metabolic fuel: Overcoming a misconception using conceptual change to teach the energy-yielding metabolism to Brazilian high school students. Biochemistry and Molecular Biology Education, 41(4), 224–231. doi:10.1002/bmb.20702.
[52] Fulmer, G. W., Liang, L. L., & Liu, X. (2014). Applying a force and motion learning progression over an extended time span using the force concept inventory. International Journal of Science Education, 36(17), 2918–2936. doi:10.1080/09500693.2014.939120.
[53] Rost, J. (1990). Rasch Models in Latent Classes: An Integration of Two Approaches to Item Analysis. Applied Psychological Measurement, 14(3), 271–282. doi:10.1177/014662169001400305.
[54] Aydeniz, M., & Kotowski, E. L. (2012). What Do Middle and High School Students Know About the Particulate Nature of Matter After Instruction? Implications for Practice. School Science and Mathematics, 112(2), 59–65. doi:10.1111/j.1949-8594.2011.00120.x.
[55] Guerra-Reyes, F., Guerra-Dávila, E., Naranjo-Toro, M., Basantes-Andrade, A., & Guevara-Betancourt, S. (2024). Misconceptions in the Learning of Natural Sciences: A Systematic Review. Education Sciences, 14(5), 497. doi:10.3390/educsci14050497.
[56] Batlolona, J. R., & Jamaludin, J. (2024). Students’ misconceptions on the concept of sound: a case study about Marinyo, Tanimbar Islands. Journal of Education and Learning, 18(3), 681–689. doi:10.11591/edulearn.v18i3.21135.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
