System Parameters Sensitivity Analysis of Ocean Thermal Energy Conversion
Abstract
Doi: 10.28991/ESJ-2024-08-02-04
Full Text: PDF
Keywords
References
Alanazi, M. A., Aloraini, M., Islam, M., Alyahya, S., & Khan, S. (2023). Wind Energy Assessment Using Weibull Distribution with Different Numerical Estimation Methods: A Case Study. Emerging Science Journal, 7(6), 2260-2278. doi:10.28991/ESJ-2023-07-06-024.
Wang, C. M., Yee, A. A., Krock, H., & Tay, Z. Y. (2011). Research and developments on ocean thermal energy conversion. IES Journal Part A: Civil and Structural Engineering, 4(1), 41–52. doi:10.1080/19373260.2011.543606.
Nihous, G. C., & Vega, L. A. (1993). Design of a 100 MW OTEC-hydrogen plantship. Marine Structures, 6(2–3), 207–221. doi:10.1016/0951-8339(93)90020-4.
Koto, J. (2016). Potential of Ocean Thermal Energy Conversion in Indonesia. International Journal of Environmental Research & Clean Energy, 4(1), 1–7.
Sinuhaji, A. R. (2015). Potential Ocean Thermal Energy Conversion (OTEC) in Bali. KnE Energy, 1(1), 5. doi:10.18502/ken.v1i1.330.
Adiputra, R., & Utsunomiya, T. (2018). Design Optimization of Floating Structure for a 100 MW-Net Ocean Thermal Energy Conversion (OTEC) Power Plant. Volume 10: Ocean Renewable Energy. doi:10.1115/omae2018-77539.
Adiputra, R., Utsunomiya, T., Koto, J., Yasunaga, T., & Ikegami, Y. (2020). Preliminary design of a 100 MW-net ocean thermal energy conversion (OTEC) power plant study case: Mentawai island, Indonesia. Journal of Marine Science and Technology (Japan), 25(1), 48–68. doi:10.1007/s00773-019-00630-7.
Lutfi, Y. M., Adiputra, R., Prabowo, A. R., Utsunomiya, T., Erwandi, E., & Muhayat, N. (2023). Assessment of the stiffened panel performance in the OTEC seawater tank design: Parametric study and sensitivity analysis. Theoretical and Applied Mechanics Letters, 13(4). doi:10.1016/j.taml.2023.100452.
Adiputra, R., & Utsunomiya, T. (2019). Stability Analysis of Free Hanging Riser Conveying Fluid for Ocean Thermal Energy Conversion (OTEC) Utilization. Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology. doi:10.1115/omae2019-96749.
Adiputra, R., & Utsunomiya, T. (2019). Stability based approach to design cold-water pipe (CWP) for ocean thermal energy conversion (OTEC). Applied Ocean Research, 92. doi:10.1016/j.apor.2019.101921.
Adiputra, R., & Utsunomiya, T. (2021). Linear vs non-linear analysis on self-induced vibration of OTEC cold water pipe due to internal flow. Applied Ocean Research, 110. doi:10.1016/j.apor.2021.102610.
Adiputra, R., & Utsunomiya, T. (2022). Finite Element Modelling Of Ocean Thermal Energy Conversion (OTEC) Cold Water Pipe (CWP). Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering (OMAE). doi:10.1115/OMAE2022-78135.
Habib, M. I., Adiputra, R., Prabowo, A. R., Erwandi, E., Muhayat, N., Yasunaga, T., Ehlers, S., & Braun, M. (2023). Internal flow effects in OTEC cold water pipe: Finite element modelling in frequency and time domain approaches. Ocean Engineering, 288(116056). doi:10.1016/j.oceaneng.2023.116056.
Adie, P. W., Prabowo, A. R., Muttaqie, T., Adiputra, R., Muhayat, N., Carvalho, H., & Huda, N. (2023). Non-linear assessment of cold water pipe (CWP) on the ocean thermal energy conversion (OTEC) installation under bending load. Procedia Structural Integrity, 47, 142–149. doi:10.1016/j.prostr.2023.07.005.
Adie, P. W., Adiputra, R., Prabowo, A. R., Erwandi, E., Muttaqie, T., Muhayat, N., & Huda, N. (2023). Assessment of the OTEC cold water pipe design under bending loading: A benchmarking and parametric study using finite element approach. Journal of the Mechanical Behavior of Materials, 32(1). doi:10.1515/jmbm-2022-0298.
McCallister, M., Switzer, T., Arnold, F., & Ericksen, T. (2010). Geophysical and oceanographic site survey requirements for Ocean Thermal Energy Conversion (OTEC) installations. OCEANS 2010 MTS/IEEE, Seattle, United States. doi:10.1109/oceans.2010.5664488.
Abraham, J. P., Baringer, M., Bindoff, N. L., Boyer, T., Cheng, L. J., Church, J. A., Conroy, J. L., Domingues, C. M., Fasullo, J. T., Gilson, J., Goni, G., Good, S. A., Gorman, J. M., Gouretski, V., Ishii, M., Johnson, G. C., Kizu, S., Lyman, J. M., Macdonald, A. M., … Willis, J. K. (2013). A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Reviews of Geophysics, 51(3), 450–483. doi:10.1002/rog.20022.
Samsuri, N., Shaikh Salim, S. A. Z., Musa, M. N., & Mat Ali, M. S. (2016). Modelling Performance Of Ocean-Thermal Energy Conversion Cycle According To Different Working Fluids. Jurnal Teknologi, 78(11). doi:10.11113/.v78.8741.
Liu, W., Xu, X., Chen, F., Liu, Y., Li, S., Liu, L., & Chen, Y. (2020). A review of research on the closed thermodynamic cycles of ocean thermal energy conversion. Renewable and Sustainable Energy Reviews, 119. doi:10.1016/j.rser.2019.109581.
Avery, W. H., & Wu, C. (1994). Renewable energy from the ocean: a guide to OTEC. Oxford university press, Oxford, United Kingdom. doi:10.1016/0029-8018(95)90035-7.
Eldred, M. P., Van Ryzin, J. C., Rizea, S., Chen, I. C., Loudon, R., Nagurny, N. J., Maurer, S., Jansen, E., Plumb, A., Eller, M. R., & Brown, V. R. R. (2011). Heat exchanger development for Ocean Thermal Energy Conversion. OCEANS’11 MTS/IEEE KONA, Waikoloa, United States. doi:10.23919/oceans.2011.6107175.
Fontaine, K., Yasunaga, T., & Ikegami, Y. (2019). OTEC maximum net power output using carnot cycle and application to simplify heat exchanger selection. Entropy, 21(12). doi:10.3390/e21121143.
Thirugnana, S. T., Jaafar, A. B., Rajoo, S., Azmi, A. A., Karthikeyan, H. J., Yasunaga, T., Nakaoka, T., Kamyab, H., Chelliapan, S., & Ikegami, Y. (2023). Performance Analysis of a 10 MW Ocean Thermal Energy Conversion Plant Using Rankine Cycle in Malaysia. Sustainability (Switzerland), 15(4), 3777. doi:10.3390/su15043777.
Langer, J., Cahyaningwidi, A. A., Chalkiadakis, C., Quist, J., Hoes, O., & Blok, K. (2021). Plant siting and economic potential of ocean thermal energy conversion in Indonesia a novel GIS-based methodology. Energy, 224, 224. doi:10.1016/j.energy.2021.120121.
Samsuri, N., Sazali, N., Jamaludin, A. S., & Razali, M. N. M. (2021). Techno-economic efficiencies and environmental criteria of Ocean Thermal Energy Conversion closed Rankine cycle using different working fluids. IOP Conference Series: Materials Science and Engineering, 1062(1), 012042. doi:10.1088/1757-899X/1062/1/012042.
Lee, B, Wang, Z., & Gong, N. (2022). A Study on Performance of Rankine Cycle Used in OTEC Power Plant. SSRN Electronic Journal. doi:10.2139/ssrn.4112974.
Nakaoka, T., & Uehara, H. (1988). Performance test of a shell-and-plate type evaporator for OTEC. Experimental Thermal and Fluid Science, 1(3), 283–291. doi:10.1016/0894-1777(88)90008-8.
Syamsuddin, M. L., Attamimi, A., Nugraha, A. P., Gibran, S., Afifah, A. Q., & Oriana, N. (2015). OTEC Potential in the Indonesian Seas. Energy Procedia, 65, 215–222. doi:10.1016/j.egypro.2015.01.028.
Yang, M. H., & Yeh, R. H. (2014). Analysis of optimization in an OTEC plant using organic Rankine cycle. Renewable Energy, 68, 25–34. doi:10.1016/j.renene.2014.01.029.
Ikegami, Y., Yasunaga, T., & Morisaki, T. (2018). Ocean Thermal Energy Conversion using double-stage Rankine Cycle. Journal of Marine Science and Engineering, 6(1). doi:10.3390/jmse6010021.
Dijoux, A., Sinama, F., Marc, O., & Castaing-Lasvignottes, J. (2019). Modelling and experimentation of heat exchangers for Ocean Thermal Energy Conversion during transient operation. Procedia Manufacturing, 35, 298–303. doi:10.1016/j.promfg.2019.05.043.
Sinama, F., Martins, M., Journoud, A., Marc, O., & Lucas, F. (2015). Thermodynamic analysis and optimization of a 10MW OTEC Rankine cycle in Reunion Island with the equivalent Gibbs system method and generic optimization program GenOpt. Applied Ocean Research, 53, 54–66. doi:10.1016/j.apor.2015.07.006.
Yasunaga, T., Fontaine, K., Morisaki, T., & Ikegami, Y. (2017). Performance evaluation of heat exchangers for application to ocean thermal energy conversion system. Performance Evaluation of Heat Exchangers for Application to Ocean Thermal Energy Conversion System, 22, 65-75.
Alrwashdeh, S. S., Ammari, H., Madanat, M. A., & Al-Falahat, A. M. (2022). The Effect of Heat Exchanger Design on Heat transfer Rate and Temperature Distribution. Emerging Science Journal, 6(1), 128–137. doi:10.28991/ESJ-2022-06-01-010.
Yeh, R. H., Su, T. Z., & Yang, M. S. (2005). Maximum output of an OTEC power plant. Ocean Engineering, 32(5–6), 685–700. doi:10.1016/j.oceaneng.2004.08.011.
Hernández-Romero, I. M., Nápoles-Rivera, F., Flores-Tlacuahuac, A., & Fuentes-Cortés, L. F. (2020). Optimal design of the ocean thermal energy conversion systems involving weather and energy demand variations. Chemical Engineering and Processing - Process Intensification, 157. doi:10.1016/j.cep.2020.108114.
Herrera, J., Sierra, S., Hernández-Hamón, H., Ardila, N., Franco-Herrera, A., & Ibeas, A. (2022). Economic Viability Analysis for an OTEC Power Plant at San Andrés Island. Journal of Marine Science and Engineering, 10(6). doi:10.3390/jmse10060713.
Ganic, E. N., & Wu, J. (1979). Comparative study of working fluids for OTEC power plants (No. ANL/OTEC-TM-1). Department of Energy Engineering, University of Chicago, Chicago, United States.
Hung, T. C., Wang, S. K., Kuo, C. H., Pei, B. S., & Tsai, K. F. (2010). A study of organic working fluids on system efficiency of an ORC using low-grade energy sources. Energy, 35(3), 1403–1411. doi:10.1016/j.energy.2009.11.025.
Sun, F., Ikegami, Y., Jia, B., & Arima, H. (2012). Optimization design and exergy analysis of organic rankine cycle in ocean thermal energy conversion. Applied Ocean Research, 35, 38–46. doi:10.1016/j.apor.2011.12.006.
Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Tumanyan, K. A., & Konyushkov, E. I. (2023). Thrust Vector Control within a Geometric Sphere, and the Use of Euler's Tips to Create Jet Technology. Civil Engineering Journal, 9(10), 2516-2534. doi:10.28991/CEJ-2023-09-10-011.
Yang, M. H., & Yeh, R. H. (2014). Analysis of optimization in an OTEC plant using organic Rankine cycle. Renewable Energy, 68, 25–34. doi:10.1016/j.renene.2014.01.029.
DOI: 10.28991/ESJ-2024-08-02-04
Refbacks
- There are currently no refbacks.