Design and Study the Performance of a CMOS-Based Ring Oscillator Architecture for 5G Mobile Communication

Abdul Rahman, Siddharth Kishore, A. R. Abdul Rajak

Abstract


Oscillator circuits are used to make accurate and reliable clock signals for systems as simple as a wristwatch and as complicated as satellites, which are important for long-distance communication. There are many ways to build an oscillator circuit, using either passive or active parts. Each option has pros and cons, but at the current level of mobile communication development, the most important things are interoperability and low power use. This need has driven the development of compact, battery-operated electronics, and Very Large-Scale Integration (VLSI)-based ring oscillators provide the ideal solution. These oscillators ought to dissipate less power, have a large tuning range, and be compact. The paper presents a novel Complementary Metal Oxide Silicon (CMOS) ring oscillator that serves as a Voltage Controlled Oscillator. The suggested architecture utilizes the advantages of both a current-starved ring oscillator and a negative-skewed delay by combining their constituent parts. The proposed architecture has a control voltage of 1.15 V and a supply voltage of 2 V, generating a 9.35 GHz dominant frequency with a 13.82% harmonic distortion between the inputs and outputs. The proposed architecture can implement 5G-based applications that require high frequency and low power by carefully selecting the passive components within the design.

 

Doi: 10.28991/ESJ-2024-08-01-020

Full Text: PDF


Keywords


VLSI; 5G; CMOS; Ring Oscillator; VCO; Mobile Communication.

References


Misra, D. K. (2004). Radio‐Frequency and Microwave Communication Circuits. John Wiley & Sons, Hoboken, United States. doi:10.1002/0471653764.

Rohde, U. L., Rubiola, E., & Whitaker, J. C. (2021). Microwave and Wireless Synthesizers. John Wiley & Sons, Hoboken, United States. doi:10.1002/9781119666127.

Vendelin, G. D., Pavio, A. M., & Rohde, U. L. (2005). Microwave Circuit Design Using Linear and Nonlinear Techniques. John Wiley & Sons, Hoboken, United States. doi:10.1002/0471715832.

Mandal, M. K., & Sarkar, B. C. (2010). Ring oscillators: Characteristics and applications. Indian Journal of Pure & Applied Physics, 48, 136–145.

Rajesh, V., & Abdul Rajak, A. R. (2020). Channel estimation for image restoration using OFDM with various digital modulation schemes. Journal of Physics: Conference Series, 1706(1), 012076. doi:10.1088/1742-6596/1706/1/012076.

Maiti, M., Majumder, A., Chakrabartty, S., Song, H., & Bhattacharyya, B. K. (2020). Modelling and analysis of a hybrid CS-CMOS ring VCO with wide tuning range. Microelectronics Journal, 98, 104752. doi:10.1016/j.mejo.2020.104752.

Abidi, A. A. (2006). Phase noise and jitter in CMOS ring oscillators. IEEE Journal of Solid-State Circuits, 41(8), 1803–1816. doi:10.1109/JSSC.2006.876206.

Razavi, B. (1996). A study of phase noise in CMOS oscillators. IEEE Journal of Solid-State Circuits, 31(3), 331–343. doi:10.1109/4.494195.

Hajimiri, A., Limotyrakis, S., & Lee, T. H. (1999). Jitter and phase noise in ring oscillators. IEEE Journal of Solid-State Circuits, 34(6), 790–804. doi:10.1109/4.766813.

Razavi, B., & Behzad, R. (2012). RF microelectronics. Prentice Hall, New York, United States.

Rout, S. S., Acharya, S., & Sethi, K. (2020). Design of a good oscillation frequency and moderate phase noise current mirror VCO. Procedia Computer Science, 171, 878–886. doi:10.1016/j.procs.2020.04.095.

Kavyashree, K., Chandana, D. S., Bhat, P. R. A., & Sangeetha, B. G. (2020). Design and Analysis of Voltage Controlled Oscillators in 45nm CMOS Process. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bangalore, India. doi:10.1109/icimia48430.2020.9074893.

Shekhar, C., & Qureshi, S. (2018). Design and Analysis of Current Starved VCO Targeting SCL 180 nm CMOS Process. 2018 IEEE International Symposium on Smart Electronic Systems (ISES), Hyderabad, India. doi:10.1109/ises.2018.00027.

Kompella, S. K., & Abdul Rajak, A. R. (2022). Design and Study the Performance of Micro-Strip Patch Antennae for 5G Mobile Communication. ICT Systems and Sustainability. Lecture Notes in Networks and Systems, 321, Springer, Singapore. doi:10.1007/978-981-16-5987-4_2.

Caram, J. P., Galloway, J., & Kenney, J. S. (2019). Voltage-Controlled Ring Oscillator with FOM Improvement by Inductive Loading. IEEE Microwave and Wireless Components Letters, 29(2), 122–124. doi:10.1109/LMWC.2019.2891168.

Hara, M., Yano, Y., Takahashi, Y., Nishizawa, T., Hara, S., Kasamatsu, A., Ueda, M., Ito, H., & Ido, T. (2021). Super-high-frequency-band injection-locked two-divider oscillator using thin-film bulk acoustic resonator. Electronics Letters, 57(3), 132–134. doi:10.1049/ell2.12071.

Ek, S., Pahlsson, T., Carlsson, A., Axholt, A., Stenman, A.-K., & Sjoland, H. (2017). A 16–20 GHz LO system with 115 fs jitter for 24–30 GHz 5G in 28 nm FD-SOI CMOS. ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference. doi:10.1109/esscirc.2017.8094573.

Elgaard, C., & Sundstrom, L. (2017). A 491.52 MHz 840 uW crystal oscillator in 28 nm FD-SOI CMOS for 5G applications. ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference. doi:10.1109/esscirc.2017.8094572.

Abouyoussef, M. S., El-Tager, A. M., & El-Ghitani, H. (2019). Ultra-low Phase Noise RF Oscillator Using High-Q Quad Spiral Resonator. 2019 PhotonIcs & Electromagnetics Research Symposium - Spring. doi:10.1109/piers-spring46901.2019.9017433.

Melamed, I., & Cohen, E. (2022). A 30 GHz 4.2 mW 105 fsec Jitter Sub-Sampling PLL with 1° Phase Shift Resolution in 65 nm CMOS. 2022 IEEE 22nd Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Las Vegas, United States. doi:10.1109/sirf53094.2022.9720065.

Lee, J. Y., Kim, G. S., Ko, G. H., Oh, K. Il, Park, J. G., & Baek, D. (2020). Low Phase Noise and Wide-Range Class-C VCO Using Auto-Adaptive Bias Technique. Electronics (Switzerland), 9(8), 1–10. doi:10.3390/electronics9081290.

Kumar, P., Stajic, D., Nevzat Isa, E., & Maurer, L. (2022). 26 GHz VCO in 22 nm FDSOI Technology for RADAR Application. 2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS). doi:10.1109/lascas53948.2022.9789048.

Maiellaro, G., Caruso, G., Scaccianoce, S., Giacomini, M., & Scuderi, A. (2021). 40 Ghz Vco and Frequency Divider in 28 Nm Fd-Soi Cmos Technology for Automotive Radar Sensors. Electronics (Switzerland), 10(17), 2114. doi:10.3390/electronics10172114.

Kim, C., Kim, M., Jeon, Y., Lee, O., Son, J. H., & Nam, I. (2019). A 28-GHz CMOS down-conversion mixer with low-magnetic-coupled source degeneration inductors for 5G applications. Journal of Semiconductor Technology and Science, 19(4), 373–377. doi:10.5573/JSTS.2019.19.4.373.

Kim, H. T., Park, B. S., Song, S. S., Moon, T. S., Kim, S. H., Kim, J. M., Chang, J. Y., & Ho, Y. C. (2018). A 28-GHz CMOS Direct Conversion Transceiver with Antenna Array for 5G Cellular System. IEEE Journal of Solid-State Circuits, 53(5), 1245–1259. doi:10.1109/JSSC.2018.2817606.

Dan, I., Ducournau, G., Hisatake, S., Szriftgiser, P., Braun, R. P., & Kallfass, I. (2020). A Terahertz Wireless Communication Link Using a Superheterodyne Approach. IEEE Transactions on Terahertz Science and Technology, 10(1), 32–43. doi:10.1109/TTHZ.2019.2953647.

Utomo, D. R., Park, D. W., Hong, J. P., & Lee, S. G. (2019). A 270-GHz push-push transformer-based oscillator adopting power leakage suppression technique. Electronics (Switzerland), 8(11), 1347. doi:10.3390/electronics8111347.

Ciarpi, G., Monda, D., Mestice, M., Rossi, D., & Saponara, S. (2023). Asymmetric 5.5 GHz Three-Stage Voltage-Controlled Ring-Oscillator in 65 nm CMOS Technology. Electronics (Switzerland), 12(3), 778–778. doi:10.3390/electronics12030778.

Hemel, M. S. K., Minhad, K. N., Ooi, K. J. A., Reaz, M. B. I., Amin, M. S., & Bhuiyan, M. A. S. (2023). Ring Oscillator Based Voltage Controlled Oscillator Design for IoT Based Wireless Patient Monitoring Station in 50 nm CMOS Process. 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), Chittagong, Bangladesh. doi:10.1109/ecce57851.2023.10101565.

Rahin, A. B., Kadivarian, A., & Dadgar, M. (2023). Ring Oscillator with Frequency Adjustment and Reconfiguration Capability Using Switched NAND-NOR. 12th Majlesi Conference on Electrical Engineering, 23 August, 2023, Majlesi, Iran.

Jo, Y., Kim, J., Shin, Y., Park, H., Hwang, C., Lim, Y., & Choi, J. (2023). A Wideband LO Generator for 5G FR1 Bands Using a Single LC-VCO-Based Subsampling PLL and a Ring-VCO-Based Fractional-Resolution Frequency Multiplier. IEEE Journal of Solid-State Circuits, 58(12), 3338–3350. doi:10.1109/JSSC.2023.3321837.

Sivasakthi, M., & Radhika, P. (2024). Design and analysis of PVT tolerant hybrid current starved ring VCO with bulk driven keeper technique at 45 nm CMOS technology for the PLL application. AEU-International Journal of Electronics and Communications, 173, 154987–154987. doi:10.1016/j.aeue.2023.154987.

Baker, R. J. (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470891179.

Holbork, J. (2019). The 8 Most Important (and Fundamental) Oscillator Parameters, High Frequency Electronics Website. Available online: https://www.highfrequencyelectronics.com/index.php?option=com_content&view=article&id=2281:the-8-most-important-and-fundamental-oscillator-parameters&catid=191&Itemid=189 (accessed on January 2024).


Full Text: PDF

DOI: 10.28991/ESJ-2024-08-01-020

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Abdul Rajak, Abdul Rahman, Siddharth Kishore