Modeling Plasmonics and Electronics in Semiconducting Graphene Nanostrips
Abstract
Doi: 10.28991/ESJ-2023-07-05-01
Full Text: PDF
Keywords
References
Dai, Y., Zhou, Z., Ghosh, A., Mong, R. S. K., Kubo, A., Huang, C. Bin, & Petek, H. (2020). Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature, 588(7839), 616–619. doi:10.1038/s41586-020-3030-1.
Boerigter, C., Campana, R., Morabito, M., & Linic, S. (2016). Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nature Communications, 7(1), 10545. doi:10.1038/ncomms10545.
Chen, H., Shao, L., Li, Q., & Wang, J. (2013). Gold nanorods and their plasmonic properties. Chemical Society Reviews, 42(7), 2679–2724. doi:10.1039/c2cs35367a.
Zhang, J., Zhang, L., & Xu, W. (2012). Surface plasmon polaritons: Physics and applications. Journal of Physics D: Applied Physics, 45(11), 113001. doi:10.1088/0022-3727/45/11/113001.
Song, X., Wang, Y., Zhao, F., Li, Q., Ta, H. Q., Rümmeli, M. H., Tully, C. G., Li, Z., Yin, W. J., Yang, L., Lee, K. B., Yang, J., Bozkurt, I., Liu, S., Zhang, W., & Chhowalla, M. (2019). Plasmon-Free Surface-Enhanced Raman Spectroscopy Using Metallic 2D Materials. ACS Nano, 13(7), 8312–8319. doi:10.1021/acsnano.9b03761.
Soldano, C., Mahmood, A., & Dujardin, E. (2010). Production, properties and potential of graphene. Carbon, 48(8), 2127–2150. doi:10.1016/j.carbon.2010.01.058.
Grigorenko, A. N., Polini, M., & Novoselov, K. S. (2012). Graphene plasmonics. Nature Photonics, 6(11), 749–758. doi:10.1038/nphoton.2012.262.
García de Abajo, F. J. (2014). Graphene Plasmonics: Challenges and Opportunities. ACS Photonics, 1(3), 135–152. doi:10.1021/ph400147y.
Ni, G. X., McLeod, A. S., Sun, Z., Wang, L., Xiong, L., Post, K. W., Sunku, S. S., Jiang, B.-Y., Hone, J., Dean, C. R., Fogler, M. M., & Basov, D. N. (2018). Fundamental limits to graphene plasmonics. Nature, 557(7706), 530–533. doi:10.1038/s41586-018-0136-9.
Karimi, F., & Knezevic, I. (2017). Plasmons in graphene nanoribbons. Physical Review B, 96(12), 125417. doi:10.1103/PhysRevB.96.125417.
Dutta, S., & Pati, S. K. (2010). Novel properties of graphene nanoribbons: A review. Journal of Materials Chemistry, 20(38), 8207–8223. doi:10.1039/c0jm00261e.
Tian, C., Miao, W., Zhao, L., & Wang, J. (2023). Graphene nanoribbons: Current status and challenges as quasi-one-dimensional nanomaterials. Reviews in Physics, 10, 100082. doi:10.1016/j.revip.2023.100082.
Zhuang, H., Kong, F., Li, K., & Sheng, S. (2015). Plasmonic bandpass filter based on graphene nanoribbon. Applied Optics, 54(10), 2558. doi:10.1364/ao.54.002558.
Silveiro, I., Ortega, J. M. P., & Abajo, F. J. G. De. (2015). Plasmon wave function of graphene nanoribbons. New Journal of Physics, 17(8), 83013. doi:10.1088/1367-2630/17/8/083013.
Fei, Z., Goldflam, M. D., Wu, J. S., Dai, S., Wagner, M., McLeod, A. S., Liu, M. K., Post, K. W., Zhu, S., Janssen, G. C. A. M., Fogler, M. M., & Basov, D. N. (2015). Edge and Surface Plasmons in Graphene Nanoribbons. Nano Letters, 15(12), 8271–8276. doi:10.1021/acs.nanolett.5b03834.
Gomez, C. V., Pisarra, M., Gravina, M., & Sindona, A. (2017). Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges. Beilstein Journal of Nanotechnology, 8(1), 172–182. doi:10.3762/bjnano.8.18.
Andersen, D. R., & Raza, H. (2012). Plasmon dispersion in semimetallic armchair graphene nanoribbons. Physical Review B, 85(7). doi:10.1103/physrevb.85.075425.
Xia, S., Zhai, X., Wang, L., Li, H., Huang, Z., & Lin, Q. (2015). Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons. Optics Communications, 352, 110–115. doi:10.1016/j.optcom.2015.05.002.
Popov, V. V., Bagaeva, T. Y., Otsuji, T., & Ryzhii, V. (2010). Oblique terahertz plasmons in graphene nanoribbon arrays. Physical Review B - Condensed Matter and Materials Physics, 81(7), 73404. doi:10.1103/PhysRevB.81.073404.
Tene, T., Guevara, M., Viteri, E., Maldonado, A., Pisarra, M., Sindona, A., Gomez, C. V., & Bellucci, S. (2022). Calibration of Fermi Velocity to Explore the Plasmonic Character of Graphene Nanoribbon Arrays by a Semi-Analytical Model. Nanomaterials, 12(12). doi:10.3390/nano12122028.
Yang, Y., & Murali, R. (2010). Impact of size effect on graphene nanoribbon transport. IEEE Electron Device Letters, 31(3), 237–239. doi:10.1109/LED.2009.2039915.
Tene, T., Guevara, M., Cevallos, Y., Sáez Paguay, M. Á., Bellucci, S., & Vacacela Gomez, C. (2023). THz Surface Plasmons in Wide and Freestanding Graphene Nanoribbon Arrays. Coatings, 13(1), 28. doi:10.3390/coatings13010028.
Tene, T., Guevara, M., Svozilík, J., Coello-Fiallos, D., Briceño, J., & Vacacela Gomez, C. (2022). Proving Surface Plasmons in Graphene Nanoribbons Organized as 2D Periodic Arrays and Potential Applications in Biosensors. Chemosensors, 10(12), 514. doi:10.3390/chemosensors10120514.
Tene, T., Guevara, M., Borja, M., Mendoza Salazar, M. J., Palacios Robalino, M. de L., Vacacela Gomez, C., & Bellucci, S. (2023). Modeling semiconducting silicene nanostrips: electronics and THz plasmons. Frontiers in Physics, 11, 1198214. doi:10.3389/fphy.2023.1198214.
Ratnawati, R., Wulandari, R., Kumoro, A. C., & Hadiyanto, H. (2022). Response surface methodology for formulating PVA/starch/lignin biodegradable plastic. Emerging Science Journal, 6(2), 238-255. doi:10.28991/ESJ-2022-06-02-03.
Sindona, A., Vacacela Gomez, C., & Pisarra, M. (2022). Dielectric screening versus geometry deformation in two-dimensional allotropes of silicon and germanium. Scientific Reports, 12(1), 15107. doi:10.1038/s41598-022-19260-y.
Gori-Giorgi, P., Seidl, M., & Vignale, G. (2009). Density-Functional Theory for Strongly Interacting Electrons. Physical Review Letters, 103(16). doi:10.1103/physrevlett.103.166402.
Troullier, N., & Martins, J. (1990). A straightforward method for generating soft transferable pseudopotentials. Solid State Communications, 74(7), 613–616. doi:10.1016/0038-1098(90)90686-6.
Sindona, A., Pisarra, M., Bellucci, S., Tene, T., Guevara, M., & Vacacela Gomez, C. (2019). Plasmon oscillations in two-dimensional arrays of ultranarrow graphene nanoribbons. Physical Review B, 100(23), 235422. doi:10.1103/PhysRevB.100.235422.
Wisesa, P., McGill, K. A., & Mueller, T. (2016). Efficient generation of generalized Monkhorst-Pack grids through the use of informatics. Physical Review B, 93(15), 155109. doi:10.1103/PhysRevB.93.155109.
Aryasetiawan, F., & Gunnarsson, O. (1998). The GW method. Reports on Progress in Physics, 61(3), 237–312. doi:10.1088/0034-4885/61/3/002.
Hagen, G., Vaagen, J. S., & Hjorth-Jensen, M. (2004). The contour deformation method in momentum space, applied to subatomic physics. Journal of Physics A: Mathematical and General, 37(38), 8991–9021. doi:10.1088/0305-4470/37/38/006.
Zhang, Y., Tan, Y. W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 438(7065), 201–204. doi:10.1038/nature04235.
Jacak, W. A. (2015). Lorentz friction for surface plasmons in metallic nanospheres. Journal of Physical Chemistry C, 119(12), 6749–6759. doi:10.1021/jp511560g.
Egerton, R. F. (2009). Electron energy-loss spectroscopy in the TEM. Reports on Progress in Physics, 72(1), 16502. doi:10.1088/0034-4885/72/1/016502.
Han, M. Y., Özyilmaz, B., Zhang, Y., & Kim, P. (2007). Energy Band-Gap Engineering of Graphene Nanoribbons. Physical Review Letters, 98(20). doi:10.1103/physrevlett.98.206805.
Yang, L., Park, C.-H., Son, Y.-W., Cohen, M. L., & Louie, S. G. (2007). Quasiparticle Energies and Band Gaps in Graphene Nanoribbons. Physical Review Letters, 99(18). doi:10.1103/physrevlett.99.186801.
Kiraly, B., Mannix, A. J., Jacobberger, R. M., Fisher, B. L., Arnold, M. S., Hersam, M. C., & Guisinger, N. P. (2016). Sub-5 nm, globally aligned graphene nanoribbons on Ge(001). Applied Physics Letters, 108(21). doi:10.1063/1.4950959.
Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H. A., Liang, X., Zettl, A., Shen, Y. R., & Wang, F. (2011). Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 6(10), 630–634. doi:10.1038/nnano.2011.146.
Tao, C., Jiao, L., Yazyev, O. V., Chen, Y. C., Feng, J., Zhang, X., Capaz, R. B., Tour, J. M., Zettl, A., Louie, S. G., Dai, H., & Crommie, M. F. (2011). Spatially resolving edge states of chiral graphene nanoribbons. Nature Physics, 7(8), 616–620. doi:10.1038/nphys1991.
Ryu, S., Maultzsch, J., Han, M. Y., Kim, P., & Brus, L. E. (2011). Raman spectroscopy of lithographically patterned graphene nanoribbons. ACS Nano, 5(5), 4123–4130. doi:10.1021/nn200799y.
Vacacela Gomez, C., Guevara, M., Tene, T., Villamagua, L., Usca, G. T., Maldonado, F., Tapia, C., Cataldo, A., Bellucci, S., & Caputi, L. S. (2021). The liquid exfoliation of graphene in polar solvents. Applied Surface Science, 546, 149046. doi:10.1016/j.apsusc.2021.149046.
Gomez, C. V., Tene, T., Guevara, M., Usca, G. T., Colcha, D., Brito, H., Molina, R., Bellucci, S., & Tavolaro, A. (2019). Preparation of few-layer graphene dispersions from hydrothermally expanded graphite. Applied Sciences (Switzerland), 9(12), 2539. doi:10.3390/app9122539.
Usca, G. T., Gomez, C. V., Guevara, M., Tene, T., Hernandez, J., Molina, R., Tavolaro, A., Miriello, D., & Caputi, L. S. (2019). Zeolite-assisted shear exfoliation of graphite into few-layer graphene. Crystals, 9(8), 377. doi:10.3390/cryst9080377.
Cayambe, M., Zambrano, C., Tene, T., Guevara, M., Usca, G. T., Brito, H., Molina, R., Coello-Fiallos, D., Caputi, L. S., & Gomez, C. V. (2019). Dispersion of graphene in ethanol by sonication. Materials Today: Proceedings, 37, 4027–4030. doi:10.1016/j.matpr.2020.06.441.
Villamagua, L., Carini, M., Stashans, A., & Gomez, C. V. (2016). Band gap engineering of graphene through quantum confinement and edge distortions. Ricerche Di Matematica, 65(2), 579–584. doi:10.1007/s11587-016-0278-8.
Feng, Y., Lin, S., Huang, S., Shrestha, S., & Conibeer, G. (2015). Can Tauc plot extrapolation be used for direct-band-gap semiconductor nanocrystals? Journal of Applied Physics, 117(12), 125701. doi:10.1063/1.4916090.
Tene, T., Guevara, M., Tubon-Usca, G., Cáceres, O. V., Moreano, G., Gomez, C. V., & Bellucci, S. (2023). THz plasmonics and electronics in germanene nanostrips. Journal of Semiconductors, 44(10), 102001-1.
DOI: 10.28991/ESJ-2023-07-05-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Cristian Vacacela Gomez, Cristian Vacacela Gomez, Talia Tene, Marco Guevara, Gabriel Moreano, Edisson Calderón, Nataly Bonilla García, Stefano Bellucci