Multi-Fusion Algorithms for Detecting Land Surface Pattern Changes Using Multi-High Spatial Resolution Images and Remote Sensing Analysis

Hayder Dibs, Hussein Sabah Jaber, Nadhir Al-Ansari

Abstract


Producing accurate Land-Use and Land-Cover (LU/LC) maps using low-spatial-resolution images is a difficult task. Pan-sharpening is crucial for estimating LU/LC patterns. This study aimed to identify the most precise procedure for estimating LU/LC by adopting two fusion approaches, namely Color Normalized Brovey (BM) and Gram-Schmidt Spectral Sharpening (GS), on high-spatial-resolution Multi-sensor and Multi-spectral images, such as (1) the Unmanned Aerial Vehicle (UAV) system, (2) the WorldView-2 satellite system, and (3) low-spatial-resolution images like the Sentinel-2 satellite, to generate six levels of fused images with the three original multi-spectral images. The Maximum Likelihood method (ML) was used for classifying all nine images. A confusion matrix was used to evaluate the accuracy of each single classified image. The obtained results were statistically compared to determine the most reliable, accurate, and appropriate LU/LC map and procedure. It was found that applying GS to the fused image, which integrated WorldView-2 and Sentinel-2 satellite images and was classified by the ML method, produced the most accurate results. This procedure has an overall accuracy of 88.47% and a kappa coefficient of 0.85. However, the overall accuracies of the three classified multispectral images range between 86.84% to 76.49%. Furthermore, the accuracy assessment of the fused images by the Brovey method and the rest of the GS method and classified by the ML method ranges between 85.75% to 76.68%. This proposed procedure shows a lot of promise in the academic sphere for mapping LU/LC. Previous researchers have mostly used satellite images or datasets with similar spatial and spectral resolution, at least for tropical areas like the study area of this research, to detect land surface patterns. However, no one has previously investigated and examined the use and application of different datasets that have different spectral and spatial resolutions and their accuracy for mapping LU/LC. This study has successfully adopted different datasets provided by different sensors with varying spectral and spatial levels to investigate this.

 

Doi: 10.28991/ESJ-2023-07-04-013

Full Text: PDF


Keywords


Image Fusion; Brovey Method; Gram-Schmidt Approach; Image Classification; LU/LC.

References


Otukei, J. R., Blaschke, T., & Collins, M. (2015). Fusion of TerraSAR-x and Landsat ETM+ data for protected area mapping in Uganda. International Journal of Applied Earth Observation and Geoinformation, 38, 99–104. doi:10.1016/j.jag.2014.12.012.

Huiyong Sang, Jixian Zhang, Liang Zhai, Chengji Qiu, & Xiaoxia Sun. (2014). Analysis of RapidEye imagery for agricultural land cover and land use mapping. 2014 Third International Workshop on Earth Observation and Remote Sensing Applications (EORSA). doi:10.1109/eorsa.2014.6927914.

Dibs, H., Idrees, M. O., Saeidi, V., & Mansor, S. (2016). Automatic keypoints extraction from UAV image with refine and improved scale invariant features transform (RI-SIFT). International Journal of Geoinformatics, 12(3), 31–58.

Fahad, K. H., Hussein, S., & Dibs, H. (2020). Spatial-Temporal Analysis of Land Use and Land Cover Change Detection Using Remote Sensing and GIS Techniques. IOP Conference Series: Materials Science and Engineering, 671(1), 012046. doi:10.1088/1757-899x/671/1/012046.

Dibs, H., Hasab, H. A., Mahmoud, A. S., & Al-Ansari, N. (2021). Fusion Methods and Multi-classifiers to Improve Land Cover Estimation Using Remote Sensing Analysis. Geotechnical and Geological Engineering, 39(8), 5825–5842. doi:10.1007/s10706-021-01869-x.

Gevana, D., Camacho, L., Carandang, A., Camacho, S., & Im, S. (2015). Land use characterization and change detection of a small mangrove area in Banacon Island, Bohol, Philippines using a maximum likelihood classification method. Forest Science and Technology, 11(4), 197–205. doi:10.1080/21580103.2014.996611.

Dibs, H., Mansor, S., Ahmad, N., Pradhan, B., & Al-Ansari, N. (2020). Automatic Fast and Robust Technique to Refine Extracted SIFT Key Points for Remote Sensing Images. Journal of Civil Engineering and Architecture, 14(6), 339-350. doi:10.17265/1934-7359/2020.06.005.

Chasmer, L., Hopkinson, C., Veness, T., Quinton, W., & Baltzer, J. (2014). A decision-tree classification for low-lying complex land cover types within the zone of discontinuous permafrost. Remote Sensing of Environment, 143, 73–84. doi:10.1016/j.rse.2013.12.016.

Dibs, H., Mansor, S., Ahmad, N., & Pradhan, B. (2015). Band-to-band registration model for near-equatorial Earth observation satellite images with the use of automatic control point extraction. International Journal of Remote Sensing, 36(8), 2184–2200. doi:10.1080/01431161.2015.1034891.

Löw, F., Conrad, C., & Michel, U. (2015). Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 191–204. doi:10.1016/j.isprsjprs.2015.07.001.

Cavur, M., Duzgun, H. S., Kemec, S., & Demirkan, D. C. (2019). Land Use and Land Cover Classification of Sentinel 2-A: St Petersburg Case Study. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-1/W2, 13–16. doi:10.5194/isprs-archives-xlii-1-w2-13-2019.

Kadhim, N., Ismael, N. T., & Kadhim, N. M. (2022). Urban Landscape Fragmentation as an Indicator of Urban Expansion Using Sentinel-2 Imageries. Civil Engineering Journal, 8(9), 1799-1814. doi:10.28991/CEJ-2022-08-09-04.

Dibs, H., AL-Hedny, S., & Abed Karkoosh, H. S. (2018). Extracting detailed buildings 3D model with using high resolution satellite imagery by remote sensing and GIS analysis; Al-Qasim Green University a case study. International Journal of Civil Engineering and Technology, 9(7), 1097–1108.

Mann, R., & Gupta, A. (2022). Temporal Trends of Rainfall and Temperature over Two Sub-Divisions of Western Ghats. HighTech and Innovation Journal, 3, 28-42. doi:10.28991/HIJ-SP2022-03-03.

Ghahremani, M., & Ghassemian, H. (2016). A compressed-sensing-based pan-sharpening method for spectral distortion reduction. IEEE Transactions on Geoscience and Remote Sensing, 54(4), 2194–2206. doi:10.1109/TGRS.2015.2497309.

Zhang, L., Gong, Z., Wang, Q., Jin, D., & Wang, X. (2019). Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images. Journal of Remote Sensing, 23(2), 313–326. doi:10.11834/jrs.20198083.

Padmanaban, R., Bhowmik, A. K., & Cabral, P. (2019). Satellite image fusion to detect changing surface permeability and emerging urban heat islands in a fast-growing city. PLoS ONE, 14(1), 208949. doi:10.1371/journal.pone.0208949.

Wang, L., Chang, Q., Yang, J., Zhang, X., & Li, F. (2018). Estimation of paddy rice leaf area index using machine learning methods based on hyperspectral data from multi-year experiments. PLoS ONE, 13(12), 207624. doi:10.1371/journal.pone.0207624.

Ma, Y., Fang, S., Peng, Y., Gong, Y., & Wang, D. (2019). Remote estimation of biomass in winter oilseed rape (Brassica napus L.) using canopy hyperspectral data at different growth stages. Applied Sciences (Switzerland), 9(3), 545. doi:10.3390/app9030545.

Hashim, F., Dibs, H., & Jaber, H. S. (2021). Applying Support Vector Machine Algorithm on Multispectral Remotely sensed satellite image for Geospatial Analysis. Journal of Physics: Conference Series, 1963(1). doi:10.1088/1742-6596/1963/1/012110.

Dibs, H., Hasab, H. A., Jaber, H. S., & Al-Ansari, N. (2022). Automatic feature extraction and matching modelling for highly noise near-equatorial satellite images. Innovative Infrastructure Solutions, 7(1), 1–14. doi:10.1007/s41062-021-00598-7.

Xu, B., Liang, C., Chai, D., Shi, W., & Sun, G. (2014). Inversion of natural grassland productivity from remote sensor imagery in Zulihe River Basin. Arid Zone Research, 31, 1147-1152.

Wang, W., Zhang, X., Zhao, Y., & Wang, S. (2017). Cotton extraction method of integrated multi-features based on multitemporal Landsat 8 images. Yaogan Xuebao/Journal of Remote Sensing, 21(1), 115–124. doi:10.11834/jrs.20175317.

Wang, X., & Chen, D. (2018). Interannual variability of GNDVI and its relationship with altitudinal in the Three-River Headwater Region. Journal of Ecology and Environmental Sciences, 27, 1411-1416.

Sun, C., Bian, Y., Zhou, T., & Pan, J. (2019). Using of multi-source and multi-temporal remote sensing data improves crop-type mapping in the subtropical agriculture region. Sensors (Switzerland), 19(10), 2401. doi:10.3390/s19102401.

Dibs, H., Mansor, S., Ahmad, N., & Al-Ansari, N. (2022). Geometric Correction Analysis of Highly Distortion of Near Equatorial Satellite Images Using Remote Sensing and Digital Image Processing Techniques. Engineering, 14(01), 1–8. doi:10.4236/eng.2022.141001.

Otazu, X., González-Audícana, M., Fors, O., & Núñez, J. (2005). Introduction of Sensor Spectral Response into Image Fusion Methods. Application to Wavelet-Based Methods. IEEE Transactions on Geoscience and Remote Sensing, 43(10), 2376–2385. doi:10.1109/TGRS.2005.856106.

Ibarrola-Ulzurrun, E., Gonzalo-Martin, C., Marcello-Ruiz, J., Garcia-Pedrero, A., & Rodriguez-Esparragon, D. (2017). Fusion of high resolution multispectral imagery in vulnerable coastal and land ecosystems. Sensors (Switzerland), 17(2), 228. doi:10.3390/s17020228.

Kavzoglu, T., & Tonbul, H. (2018). An experimental comparison of multi-resolution segmentation, SLIC and k-means clustering for object-based classification of VHR imagery. International Journal of Remote Sensing, 39(18), 6020–6036. doi:10.1080/01431161.2018.1506592.

Li, S., Kang, X., Fang, L., Hu, J., & Yin, H. (2017). Pixel-level image fusion: A survey of the state of the art. Information Fusion, 33, 100–112. doi:10.1016/j.inffus.2016.05.004.

Guo, Q., Ehlers, M., Wang, Q., Pohl, C., Hornberg, S., & Li, A. (2017). Ehlers pan-sharpening performance enhancement using HCS transform for n-band data sets. International Journal of Remote Sensing, 38(17), 4974–5002. doi:10.1080/01431161.2017.1320448.

Laben, C. A., & Brower, B. V. (2000). U.S. Patent No. 6,011,875. Washington, DC: U.S. Patent and Trademark Office, Alexandria, United States

Gonzalez-Audicana, M., Saleta, J. L., Catalan, R. G., & Garcia, R. (2004). Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing, 42(6), 1291–1299. doi:10.1109/tgrs.2004.825593.

Pradhan, P. S., King, R. L., Younan, N. H., & Holcomb, D. W. (2006). Estimation of the number of decomposition levels for a wavelet-based multiresolution multisensor image fusion. IEEE Transactions on Geoscience and Remote Sensing, 44(12), 3674–3686. doi:10.1109/TGRS.2006.881758.

Shah, V. P., Younan, N. H., & King, R. L. (2008). An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1323–1335. doi:10.1109/TGRS.2008.916211.

Nencini, F., Garzelli, A., Baronti, S., & Alparone, L. (2007). Remote sensing image fusion using the curvelet transform. Information Fusion, 8(2), 143–156. doi:10.1016/j.inffus.2006.02.001.

Aiazzi, B., Alparone, L., Baronti, S., Carlà, R., Garzelli, A., & Santurri, L. (2017). Sensitivity of Pansharpening Methods to Temporal and Instrumental Changes Between Multispectral and Panchromatic Data Sets. IEEE Transactions on Geoscience and Remote Sensing, 55(1), 308–319. doi:10.1109/TGRS.2016.2606324.

Meng, X., Li, J., Shen, H., Zhang, L., & Zhang, H. (2016). Pansharpening with a guided filter based on three-layer decomposition. Sensors (Switzerland), 16(7), 1068. doi:10.3390/s16071068.

Li, S., & Yang, B. (2011). A new pan-sharpening method using a compressed sensing technique. IEEE Transactions on Geoscience and Remote Sensing, 49(2), 738–746. doi:10.1109/TGRS.2010.2067219.

Huang, B., Song, H., Cui, H., Peng, J., & Xu, Z. (2014). Spatial and spectral image fusion using sparse matrix factorization. IEEE Transactions on Geoscience and Remote Sensing, 52(3), 1693–1704. doi:10.1109/TGRS.2013.2253612.

Imani, M., & Ghassemian, H. (2017). Pansharpening optimisation using multiresolution analysis and sparse representation. International Journal of Image and Data Fusion, 8(3), 270–292. doi:10.1080/19479832.2017.1334713.

Maglione, P. (2016). Very High Resolution Optical Satellites: An Overview of the Most Commonly used. American Journal of Applied Sciences, 13(1), 91–99. doi:10.3844/ajassp.2016.91.

Vrabel, J. (1996). Multispectral imagery band sharpening study. Photogrammetric engineering and remote sensing, 62(9), 1075-1084.

Saroglu, E., Bektas, F., Musaoglu, N., & Goksel, C. (2004). Fusion of multisensor remote sensing data: assessing the quality of resulting images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35, 575-579.

Gharbia, R., El Baz, A. H., Hassanien, A. E., & Tolba, M. F. (2014). Remote Sensing Image Fusion Approach Based on Brovey and Wavelets Transforms. Advances in Intelligent Systems and Computing, 303, 311–321. doi:10.1007/978-3-319-08156-4_31.

Mhangara, P., Mapurisa, W., & Mudau, N. (2020). Comparison of image fusion techniques using Satellite pour l’Observation de la terre (SPOT) 6 satellite imagery. Applied Sciences (Switzerland), 10(5), 1881. doi:10.3390/app10051881.

Johnson, B. (2014). Effects of pansharpening on vegetation indices. ISPRS International Journal of Geo-Information, 3(2), 507–522. doi:10.3390/ijgi3020507.

Pohl, C., & Van Genderen, J. L. (1998). Review article Multisensor image fusion in remote sensing: Concepts, methods and applications. International Journal of Remote Sensing, 19(5), 823–854. doi:10.1080/014311698215748.

Maurer, T. (2013). How to pan-sharpen images using the gram-schmidt pan-sharpen method–A recipe. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W1, ISPRS Hannover Workshop, 21 – 24 May, 2013, Hannover, Germany

Ban, Y., Hu, H., & Rangel, I. M. (2010). Fusion of Quickbird MS and RADARSAT SAR data for urban land-cover mapping: Object-based and knowledge-based approach. International Journal of Remote Sensing, 31(6), 1391–1410. doi:10.1080/01431160903475415.

Dibs, H., Idrees, M. O., Saeidi, V., & Mansor, S. (2016). Automatic keypoints extraction from UAV image with refine and improved scale invariant features transform (RI-SIFT). International Journal of Geoinformatics, 12(3), 51-58.

Lu, D., Li, G., Moran, E., Dutra, L., & Batistella, M. (2011). A comparison of multisensor integration methods for land cover classification in the Brazilian Amazon. GIScience and Remote Sensing, 48(3), 345–370. doi:10.2747/1548-1603.48.3.345.

Taubenböck, H., Felbier, A., Esch, T., Roth, A., & Dech, S. (2012). Pixel-based classification algorithm for mapping urban footprints from radar data: A case study for RADARSAT-2. Canadian Journal of Remote Sensing, 38(3), 211–222. doi:10.5589/m11-061.

Nishii, R., & Tanaka, S. (1999). Accuracy and inaccuracy assessments in land-cover classification. IEEE Transactions on Geoscience and Remote Sensing, 37(1), 491–498. doi:10.1109/36.739098.

Jing, L., & Cheng, Q. (2009). Two improvement schemes of PAN modulation fusion methods for spectral distortion minimization. International Journal of Remote Sensing, 30(8), 2119–2131. doi:10.1080/01431160802549260.

Garzelli, A., & Nencini, F. (2005). Interband structure modeling for Pan-sharpening of very high-resolution multispectral images. Information Fusion, 6(3), 213–224. doi:10.1016/j.inffus.2004.06.008.


Full Text: PDF

DOI: 10.28991/ESJ-2023-07-04-013

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Hayder Dibs, Nadhir Abbas Al-Ansari Nadhir Al-Ansari