Investigation of Ni- and Co-Based Bifunctional Electrocatalysts for Carbon-Free Air Electrodes Designed for Zinc-Air Batteries

Emiliya Mladenova, Miglena Slavova, Borislav Abrashev, Valentin Terziev, Blagoy Burdin, Gergana Raikova

Abstract


Ni- and Co-oxide materials have promising electrocatalytic properties towards the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), and attract with low cost, availability, and environmental friendliness. The stability of these materials in alkaline media has made them the most studied candidates for practical applications such as a gas diffusion electrode (GDE) for rechargeable metal-air batteries. In this work, we propose a novel concept for a carbon-free gas GDE design. A mixture of catalyst (Co3O4, NiCo2O4) and polytetrafluoroethylene was hot pressed onto a stainless-steel mesh as the current collector. To enhance the electrical conductivity and, thus, increase ORR performances, up to 70 wt.% Ni powder was included. The GDEs produced in this way were examined in a half-cell configuration with a 6 M KOH electrolyte, stainless steel counter electrode, and hydrogen reference electrode at room temperature. Electrochemical tests were performed and coupled with microstructural observations to evaluate the properties of the present oxygen electrodes in terms of their bifunctionality and stability enhancement. The electrochemical behavior of the new types of gas-diffusion electrodes, Ni/Co3O4 and Ni/NiCo2O4, shows acceptable overpotentials for OER and ORR. Better mechanical and chemical stability of electrodes consisting of Ni/NiCo2O4 (70:30 wt.%) was registered.

 

Doi: 10.28991/ESJ-2023-07-03-023

Full Text: PDF


Keywords


Reversible Ni-Based Gas Diffusion Electrode; NiCo2O4 Based Bifunctional Electrocatalyst; Co3O4 Based Bifunctional Electrocatalyst; Alkaline Media; Carbon-Free Gas Diffusion Electrode Design.

References


European Commission. (2016). Clean Energy for All Europeans. COM (2016) 860 final. European Commission, Brussels, Belgium. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:fa6ea15b-b7b0-11e6-9e3c-01aa75ed71a1.0001. 02/DOC_1&format=PDF (accessed on April 2023).

European Commission. (2016). Accelerating Clean Energy Innovation (COM (2016) 763 final. European Commission, Brussels, Belgium. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52016DC0763&rid=4 (accessed on April 2023).

Lee, J. S., Kim, S. T., Cao, R., Choi, N. S., Liu, M., Lee, K. T., & Cho, J. (2011). Metal-air batteries with high energy density: Li-air versus Zn-air. Advanced Energy Materials, 1(1), 34–50. doi:10.1002/aenm.201000010.

Laabid, A., Saad, A., & Mazouz, M. (2022). Integration of Renewable Energies in Mobile Employment Promotion Units for Rural Populations. Civil Engineering Journal, 8(7), 1406-1434. doi:10.28991/CEJ-2022-08-07-07.

Zhang, X. G. (2006). Fibrous zinc anodes for high power batteries. Journal of Power Sources, 163(1), 591–597. doi:10.1016/j.jpowsour.2006.09.034.

Danner, T., Eswara, S., Schulz, V. P., & Latz, A. (2016). Characterization of gas diffusion electrodes for metal-air batteries. Journal of Power Sources, 324, 646–656. doi:10.1016/j.jpowsour.2016.05.108.

Haas, O., Holzer, F., Müller, K., & Müller, S. (2010). Metal/air batteries: the zinc/air case. Handbook of Fuel Cells, John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470974001.f104022.

Velraj, S., Zhu, J., Salazar-Gastelum, M. I., Corona Sandoval, E., Beltrán-Gastélum, M., Pérez-Sicairos, S., & Félix-Navarro, R. M. (2017). Electrochemical Evaluation of LaNiO3-Based Perovskites as Bifunctional Cathode Material for Rechargeable Metal-Air Batteries. ECS Meeting Abstracts, MA2017-01(1), 54–54. doi:10.1149/ma2017-01/1/54.

Kar, M., Winther-Jensen, B., Forsyth, M., & MacFarlane, D. R. (2013). Chelating ionic liquids for reversible zinc electrochemistry. Physical Chemistry Chemical Physics, 15(19), 7191–7197. doi:10.1039/c3cp51102b.

Müller, S., Holzer, F., & Haas, O. (1998). Optimized zinc electrode for the rechargeable zinc-air battery. Journal of Applied Electrochemistry, 28(9), 895–898. doi:10.1023/A:1003464011815.

Haas, O., & Van Wesemael, J. (2009). Secondary Batteries - Metal-Air Systems | Zinc-Air: Electrical Recharge. Encyclopedia of Electrochemical Power Sources, 384–392, Elsevier Science Ltd, Amsterdam, Netherlands. doi:10.1016/B978-044452745-5.00169-6.

Dunn, B., Kamath, H., & Tarascon, J. M. (2011). Electrical energy storage for the grid: A battery of choices. Science, 334(6058), 928–935. doi:10.1126/science.1212741.

Caramia, V., & Bozzini, B. (2014). Materials science aspects of zinc-air batteries: A review. Materials for Renewable and Sustainable Energy, 3(2), 28. doi:10.1007/s40243-014-0028-3.

Manoharan, R., & Shukla, A. K. (1985). Oxides supported carbon air-electrodes for alkaline solution power devices. Electrochimica Acta, 30(2), 205–209. doi:10.1016/0013-4686(85)80083-9.

Kannan, A. M., Shukla, A. K., & Sathyanarayana, S. (1989). Oxide-based bifunctional oxygen electrode for rechargeable metal/air batteries. Journal of Power Sources, 25(2), 141–150. doi:10.1016/0378-7753(89)85006-2.

Heller-Ling, N., Prestat, M., Gautier, J. L., Koenig, J. F., Poillerat, G., & Chartier, P. (1997). Oxygen electroreduction mechanism at thin Nix Co3-x O4 spinel films in a double channel electrode flow cell (DCEFC). Electrochimica Acta, 42(2), 197–202. doi:10.1016/0013-4686(96)00144-2.

Davari, E., & Ivey, D. G. (2018). Bifunctional electrocatalysts for Zn-air batteries. Sustainable Energy and Fuels, 2(1), 39–67. doi:10.1039/c7se00413c.

Yuan, X. Z., Qu, W., Zhang, X., Yao, P., & Fahlman, J. (2013). Spinel Ni x Co2-x O4 as a Bifunctional Air Electrode for Zinc Air Batteries. ECS Transactions, 45(29), 105–112. doi:10.1149/04529.0105ecst.

Price, S. W. T., Thompson, S. J., Li, X., Gorman, S. F., Pletcher, D., Russell, A. E., Walsh, F. C., & Wills, R. G. A. (2014). The fabrication of a bifunctional oxygen electrode without carbon components for alkaline secondary batteries. Journal of Power Sources, 259, 43–49. doi:10.1016/j.jpowsour.2014.02.058.

Sönmez, T., Thompson, S. J., Price, S. W. T., Pletcher, D., & Russell, A. E. (2016). Voltammetric Studies of the Mechanism of the Oxygen Reduction in Alkaline Media at the Spinels Co3O4 and NiCo2O4. Journal of The Electrochemical Society, 163(10), H884–H890. doi:10.1149/2.0111610jes.

Osgood, H., Devaguptapu, S. V., Xu, H., Cho, J., & Wu, G. (2016). Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 11(5), 601–625. doi:10.1016/j.nantod.2016.09.001.

Peng, X., Jin, X., Gao, B., Liu, Z., & Chu, P. K. (2021). Strategies to improve cobalt-based electrocatalysts for electrochemical water splitting. Journal of Catalysis, 398, 54–66. doi:10.1016/j.jcat.2021.04.003.

Rashti, A., Lu, X., Dobson, A., Hassani, E., Feyzbar-Khalkhali-Nejad, F., He, K., & Oh, T. S. (2021). Tuning MOF-Derived Co3O4/NiCo2O4Nanostructures for High-Performance Energy Storage. ACS Applied Energy Materials, 4(2), 1537–1547. doi:10.1021/acsaem.0c02736.

Béjar, J., Espinosa-Magaña, F., Guerra-Balcázar, M., Ledesma-García, J., Álvarez-Contreras, L., Arjona, N., & Arriaga, L. G. (2020). Three-Dimensional-Order Macroporous AB2O4Spinels (A, B = Co and Mn) as Electrodes in Zn-Air Batteries. ACS Applied Materials and Interfaces, 12(48), 53760–53773. doi:10.1021/acsami.0c14920.

Yu, N.-F., Huang, W., Bao, K.-L., Chen, H., Hu, K., Zhang, Y., Huang, Q.-H., Zhu, Y., & Wu, Y.-P. (2021). Co3O4@NiCo2O4 double-shelled nanocages with hierarchical hollow structure and oxygen vacancies as efficient bifunctional electrocatalysts for rechargeable Zn–air batteries. Dalton Transactions, 50(6), 2093–2101. doi:10.1039/d0dt03971c.

Mohamed, Z., Zhang, G., He, B., & Fan, Y. (2022). Heterostructure Necklace-like NiO-NiCo2O4 Hybrid with Superior Catalytic Capability as Electrocatalyst for Li-Oxygen Batteries. Engineered Science, 17, 231–241. doi:10.30919/es8d595.

Liu, J., Meng, Y., Yu, D., Guo, C., Liu, L., & Liu, X. (2022). Synthesis of Co3o4/Nico2o4 Double-Shelled Nanocages with Enhanced Capacitive and Oxygen Evolution Reaction Properties in Battery-Supercapacitor Hybrid Devices. SSRN Electronic Journal. doi:10.2139/ssrn.4265572.

Zhu, Z., Zhang, J., Peng, X., Liu, Y., Cen, T., Ye, Z., & Yuan, D. (2021). Co3O4-NiCo2O4Hybrid Nanoparticles Anchored on N-Doped Reduced Graphene Oxide Nanosheets as an Efficient Catalyst for Zn-Air Batteries. Energy and Fuels, 35(5), 4550–4558. doi:10.1021/acs.energyfuels.0c04079.

Zhao, Y., Ding, L., Wang, X., Yang, X., He, J., Yang, B., Wang, B., Zhang, D., & Li, Z. (2021). Yolk-shell ZIF-8@ZIF-67 derived Co3O4@NiCo2O4 catalysts with effective electrochemical properties for Li-O2 batteries. Journal of Alloys and Compounds, 861, 157945. doi:10.1016/j.jallcom.2020.157945.

Geng, M., & Northwood, D. O. (2003). Development of advanced rechargeable Ni/MH and Ni/Zn batteries. International Journal of Hydrogen Energy, 28(6), 633–636. doi:10.1016/S0360-3199(02)00137-4.

Xu, J., Lin, F., Doeff, M. M., & Tong, W. (2017). A review of Ni-based layered oxides for rechargeable Li-ion batteries. Journal of Materials Chemistry A, 5(3), 874–901. doi:10.1039/C6TA07991A.

Yang, J., Chen, J., Wang, Z., Wang, Z., Zhang, Q., He, B., Zhang, T., Gong, W., Chen, M., Qi, M., Coquet, P., Shum, P., & Wei, L. (2021). High-Capacity Iron-Based Anodes for Aqueous Secondary Nickel−Iron Batteries: Recent Progress and Prospects. ChemElectroChem, 8(2), 274–290. doi:10.1002/celc.202001251.

Choi, J. U., Voronina, N., Sun, Y. K., & Myung, S. T. (2020). Recent Progress and Perspective of Advanced High-Energy Co-Less Ni-Rich Cathodes for Li-Ion Batteries: Yesterday, Today, and Tomorrow. Advanced Energy Materials, 10(42), 2002027. doi:10.1002/aenm.202002027.

Budevski, E. B., Iliev, I. D., Kaisheva, A. R., Gamburtzev, S. S., & Vakanova, E. B. (1977). Method for producing powdered wetproofed material useful in making gas-diffusion electrodes. U.S. Patent No. 4,031,033. Patent and Trademark Office, Washington, United States.

Gamburzev, S., Petrov, K., & Appleby, A. J. (2002). Silver-carbon electrocatalyst for air cathodes in alkaline fuel cells. Journal of Applied Electrochemistry, 32(7), 805–809. doi:10.1023/A:1020122004048.

Nikolova, V., Iliev, P., Petrov, K., Vitanov, T., Zhecheva, E., Stoyanova, R., Valov, I., & Stoychev, D. (2008). Electrocatalysts for bifunctional oxygen/air electrodes. Journal of Power Sources, 185(2), 727–733. doi:10.1016/j.jpowsour.2008.08.031.

Abrashev, B., Uzun, D., Hristov, H., Nicheva, D., & Petrov, K. (2016). Design of an electrochemical cell for Bi-functional Oxygen Electrode (BOE) studies. Advances in Natural Science: Theory and Applications, 4(2), 1-12.

Abrashev, B., Uzun, D., Kube, A., Wagner, N., & Petrov, K. (2020). Optimization of the bi-functional oxygen electrode (BOE) structure for application in a Zn-air accumulator. Bulgarian Chemical Communications, 52(2), 245–249. doi:10.34049/bcc.52.2.5100.

Nicheva, D., Abrashev, B., Piroeva, I., Boev, V., Petkova, T., Petkov, P., & Petrov, K. (2020). NiCo2O4/Ag as catalyst for bi-functional oxygen electrode. Bulgarian Chemical Communications, 52(Special Issue E), 68-72.

Abrashev, B., Uzun, D., Kube, A., Wagner, N., & Petrov, K. (2020). Optimization of the bi-functional oxygen electrode (BOE) structure for application in a Zn-air accumulator. Bulgarian Chemical Communications, 52(2), 245–249. doi:10.34049/bcc.52.2.5100.

Zinc-Air Secondary Innovative Nanotech Based Batteries for Efficient Energy Storage (ZAS), EU Horizon 2020 framework NMP Project GA 646186. Available online: https://www.sintef.no/projectweb/zas (accessed on April 2023).

Innovative Rechargeable (2023). National Science Fond of Bulgarian Ministry of Education and Sciences, Innovative rechargeable carbon-free zinc-air cells. INOVI, Project GA No. KP-06-Н27-15/14.12.2018. Available online: https://inovi.iees.bas.bg/ (accessed on April 2023).

Mladenova, E., Vladikova, D., Stoynov, Z., Chesnaud, A., Thorel, A., & Krapchanska, M. (2013). Gases permeability study in dual membrane fuel cell. Bulgarian Chemical Communications, 45(3), 366–370.

Slavova, M., Mihaylova-Dimitrova, E., Mladenova, E., Abrashev, B., Burdin, B., & Vladikova, D. (2020). Zeolite based air electrodes for secondary batteries. Emerging Science Journal, 4(1), 18–24. doi:10.28991/esj-2020-01206.

Stoynov, Z., Vladkova, D. (2005). Differential Impedance Analysis, Marin Drinov Academic Publishing House, Sofia, Bulgaria.

Tian, W. W., Ren, J. T., Lv, X. W., & Yuan, Z. Y. (2022). A “gas-breathing” integrated air diffusion electrode design with improved oxygen utilization efficiency for high-performance Zn-air batteries. Chemical Engineering Journal, 431. doi:10.1016/j.cej.2021.133210.


Full Text: PDF

DOI: 10.28991/ESJ-2023-07-03-023

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Miglena Slavova