Deep Learning in Predicting High School Grades: A Quantum Space of Representation
Abstract
Doi: 10.28991/ESJ-2022-SIED-012
Full Text: PDF
Keywords
References
Haykin, S. (2009). Neural networks and learning machines (3rd Ed.). Pearson, New Yoork City, United States.
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. doi:10.1126/science.aaa8415.
Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE Access, 7, 53040–53065. doi:10.1109/ACCESS.2019.2912200.
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. WIREs Data Mining and Knowledge Discovery, 10(3). Portico. doi:10.1002/widm.1355.
Namoun, A., & Alshanqiti, A. (2020). Predicting Student Performance Using Data Mining and Learning Analytics Techniques: A Systematic Literature Review. Applied Sciences, 11(1), 237. doi:10.3390/app11010237.
Costa-Mendes, R., Cruz-Jesus, F., Oliveira, T., & Castelli, M. (2021). Machine learning bias in predicting high school grades: A knowledge perspective. Emerging Science Journal, 5(5), 576–597. doi:10.28991/esj-2021-01298.
Hanushek, E. A., & Wößmann, L. (2010). Education and Economic Growth. International Encyclopedia of Education, 245–252, Elsevier Science, Amsterdam, Netherlands. doi:10.1016/b978-0-08-044894-7.01227-6.
Lei, D., Chen, X., & Zhao, J. (2018). Opening the black box of deep learning. arXiv preprint arXiv:1805.08355. doi:10.48550/arXiv.1805.08355.
Golovko, V. A. (2017). Deep learning: an overview and main paradigms. Optical Memory and Neural Networks (Information Optics), 26(1), 1–17. doi:10.3103/S1060992X16040081.
Cruz-Jesus, F., Castelli, M., Oliveira, T., Mendes, R., Nunes, C., Sa-Velho, M., & Rosa-Louro, A. (2020). Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon, 6(6). doi:10.1016/j.heliyon.2020.e04081.
Jensen, A. R. (1999). The G factor: The science of mental ability. Psycoloquy, 10(04), 36–2443–36–2443,. doi:10.5860/choice.36-2443.
Georgiou, G. K., Guo, K., Naveenkumar, N., Vieira, A. P. A., & Das, J. P. (2020). PASS theory of intelligence and academic achievement: A meta-analytic review. Intelligence, 79, 101431. doi:10.1016/j.intell.2020.101431.
Frey, M. C., & Detterman, D. K. (2004). Scholastic Assessment or g? Psychological Science, 15(6), 373–378. doi:10.1111/j.0956-7976.2004.00687.x.
Rohde, T. E., & Thompson, L. A. (2007). Predicting academic achievement with cognitive ability. Intelligence, 35(1), 83–92. doi:10.1016/j.intell.2006.05.004.
Francis, B., & Skelton, C. (2005). Reassessing Gender and Achievement. Routledge, London, United Kingdom. doi:10.4324/9780203412923.
Lupart, J. L., Cannon, E., & Telfer, J. A. (2004). Gender differences in adolescent academic achievement, interests, values and life-role expectations. High Ability Studies, 15(1), 25–42. doi:10.1080/1359813042000225320.
Mensah, F. K., & Kiernan, K. E. (2010). Gender differences in educational attainment: Influences of the family environment. British Educational Research Journal, 36(2), 239–260. doi:10.1080/01411920902802198.
King, R. B. (2016). Gender differences in motivation, engagement and achievement are related to students’ perceptions of peer—but not of parent or teacher—attitudes toward school. Learning and Individual Differences, 52, 60–71. doi:10.1016/j.lindif.2016.10.006.
Di Fabio, A., & Busoni, L. (2007). Fluid intelligence, personality traits and scholastic success: Empirical evidence in a sample of Italian high school students. Personality and Individual Differences, 43(8), 2095–2104. doi:10.1016/j.paid.2007.06.025.
Kuhfeld, M., Gershoff, E., & Paschall, K. (2018). The development of racial/ethnic and socioeconomic achievement gaps during the school years. Journal of Applied Developmental Psychology, 57, 62–73. doi:10.1016/j.appdev.2018.07.001.
Perreira, K. M., Harris, K. M., & Lee, D. (2006). Making it in America: High school completion by immigrant and native youth. Demography, 43(3), 511–536. doi:10.1353/dem.2006.0026.
Levels, M., Kraaykamp, G., & Dronkers, J. (2008). Immigrant children’s educational achievement in western countries: Origin, destination, and community effects on mathematical performance. American Sociological Review, 73(5), 835–853. doi:10.1177/000312240807300507.
Lei, J., & Zhao, Y. (2007). Technology uses and student achievement: A longitudinal study. Computers and Education, 49(2), 284–296. doi:10.1016/j.compedu.2005.06.013.
Salomon, A., & Ben-David Kolikant, Y. (2016). High-school students’ perceptions of the effects of non-academic usage of ICT on their academic achievements. Computers in Human Behavior, 64, 143–151. doi:10.1016/j.chb.2016.06.024.
Kubey, R. W., Lavin, M. J., & Barrows, J. R. (2001). Internet use and collegiate academic performance decrements: Early findings. Journal of Communication, 51(2), 366–382. doi:10.1111/j.1460-2466.2001.tb02885.x.
Fan, X., & Chen, M. (2001). Parental Involvement and Students’ Academic Achievement: A Meta-Analysis. Educational Psychology Review, 13(1), 1–22. doi:10.1023/A:1009048817385.
Gilar-Corbi, R., Miñano, P., Veas, A., & Castejón, J. L. (2019). Testing for invariance in a structural model of academic achievement across underachieving and non-underachieving students. Contemporary Educational Psychology, 59, 101780. doi:10.1016/j.cedpsych.2019.101780.
Benner, A. D., Boyle, A. E., & Sadler, S. (2016). Parental Involvement and Adolescents’ Educational Success: The Roles of Prior Achievement and Socioeconomic Status. Journal of Youth and Adolescence, 45(6), 1053–1064. doi:10.1007/s10964-016-0431-4.
Sirin, S. R. (2005). Socioeconomic status and academic achievement: A meta-analytic review of research. Review of Educational Research, 75(3), 417–453. doi:10.3102/00346543075003417.
Steinmayr, R., Dinger, F. C., & Spinath, B. (2010). Parents’ education and children’s achievement: The role of personality. European Journal of Personality, 24(6), 535–550. doi:10.1002/per.755.
Tomul, E., & Savasci, H. S. (2012). Socioeconomic determinants of academic achievement. Educational Assessment, Evaluation and Accountability, 24(3), 175–187. doi:10.1007/s11092-012-9149-3.
Hoxby, C. M. (2000). The effects of class size on student achievement: New evidence from population variation. Quarterly Journal of Economics, 115(4), 1239–1285. doi:10.1162/003355300555060.
Krueger, A. B. (1999). Experimental estimates of education production functions. Quarterly Journal of Economics, 114(2), 497–532. doi:10.1162/003355399556052.
Wößmann, L., & West, M. (2006). Class-size effects in school systems around the world: Evidence from between-grade variation in TIMSS. European Economic Review, 50(3), 695–736. doi:10.1016/j.euroecorev.2004.11.005.
Leithwood, K., & Jantzi, D. (2009). A review of empirical evidence about school size effects: A policy perspective. Review of Educational Research, 79(1), 464–490. doi:10.3102/0034654308326158.
Schneider, M. (2002). Do School Facilities Affect Academic Outcomes?. Information Analysis, National Clearinghouse for Educational Facilities, Washington, United States.
Woolner, P., Hall, E., Higgins, S., McCaughey, C., & Wall, K. (2007). A sound foundation? What we know about the impact of environments on learning and the implications for Building Schools for the Future. Oxford Review of Education, 33(1), 47–70. doi:10.1080/03054980601094693.
Aaronson, D., Barrow, L., & Sander, W. (2007). Teachers and student achievement in the Chicago public high schools. Journal of Labor Economics, 25(1), 95–135. doi:10.1086/508733.
Wayne, A. J., & Youngs, P. (2003). Teacher characteristics and student achievement gains: A review. Review of Educational Research, 73(1), 89–122. doi:10.3102/00346543073001089.
Rockoff, J. E. (2004). The impact of individual teachers on student achievement: Evidence from panel data. American Economic Review, 94(2), 247–252. doi:10.1257/0002828041302244.
Rivkin, S. G., Hanushek, E. A., & Kain, J. F. (2005). Teachers, schools, and academic achievement. Econometrica, 73(2), 417–458. doi:10.1111/j.1468-0262.2005.00584.x.
Baashar, Y., Alkawsi, G., Ali, N., Alhussian, H., & Bahbouh, H. T. (2021). Predicting student’s performance using machine learning methods: A systematic literature review. 2021 International Conference on Computer & Information Sciences (ICCOINS). doi:10.1109/iccoins49721.2021.9497185.
Papamitsiou, Z., & Economides, A. A. (2014). Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence. Journal of Educational Technology & Society, 17(4), 49-64.
Alsariera, Y. A., Baashar, Y., Alkawsi, G., Mustafa, A., Alkahtani, A. A., & Ali, N. (2022). Assessment and Evaluation of Different Machine Learning Algorithms for Predicting Student Performance. Computational Intelligence and Neuroscience, 2022, 1–11. doi:10.1155/2022/4151487.
Feng, G., Fan, M., & Chen, Y. (2022). Analysis and Prediction of Students’ Academic Performance Based on Educational Data Mining. IEEE Access, 10, 19558–19571. doi:10.1109/ACCESS.2022.3151652.
Nabil, A., Seyam, M., & Abou-Elfetouh, A. (2021). Prediction of Students’ Academic Performance Based on Courses’ Grades Using Deep Neural Networks. IEEE Access, 9, 140731–140746. doi:10.1109/ACCESS.2021.3119596.
Al-Tameemi, G., Xue, J., Ajit, S., Kanakis, T., Hadi, I., Baker, T., Al-Khafajiy, M., & Al-Jumeily, R. (2021). A Deep Neural Network-Based Prediction Model for Students’ Academic Performance. 2021 14th International Conference on Developments in ESystems Engineering (DeSE). doi:10.1109/dese54285.2021.9719552.
Costa-Mendes, R., Oliveira, T., Castelli, M., & Cruz-Jesus, F. (2021). A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Education and Information Technologies, 26(2), 1527–1547. doi:10.1007/s10639-020-10316-y.
Musso, M. F., Hernández, C. F. R., & Cascallar, E. C. (2020). Predicting key educational outcomes in academic trajectories: a machine-learning approach. Higher Education, 80(5), 875–894. doi:10.1007/s10734-020-00520-7.
Mengash, H. A. (2020). Using data mining techniques to predict student performance to support decision making in university admission systems. IEEE Access, 8, 55462–55470. doi:10.1109/ACCESS.2020.2981905.
Aydoğdu, Ş. (2020). Predicting student final performance using artificial neural networks in online learning environments. Education and Information Technologies, 25(3), 1913–1927. doi:10.1007/s10639-019-10053-x.
Li, F., Zhang, Y., Chen, M., & Gao, K. (2019). Which Factors Have the Greatest Impact on Student’s Performance. Journal of Physics: Conference Series, 1288(1). doi:10.1088/1742-6596/1288/1/012077.
Altaf, S., Soomro, W., & Rawi, M. I. M. (2019). Student Performance Prediction using Multi-Layers Artificial Neural Networks. Proceedings of the 2019 3rd International Conference on Information System and Data Mining-ICISDM 2019. doi:10.1145/3325917.3325919.
Lau, E. T., Sun, L., & Yang, Q. (2019). Modelling, prediction and classification of student academic performance using artificial neural networks. SN Applied Sciences, 1(9), 1–10,. doi:10.1007/s42452-019-0884-7.
Arunachalam, A. S., & Velmurugan, T. (2018). Analyzing student performance using evolutionary artificial neural network algorithm. International Journal of Engineering and Technology(UAE), 7(2.26), 67–73. doi:10.14419/ijet.v7i2.26.12537.
Mondal, A., & Mukherjee, J. (2018). An Approach to Predict a Student’s Academic Performance using Recurrent Neural Network (RNN). International Journal of Computer Applications, 181(6), 1–5. doi:10.5120/ijca2018917352.
Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT Press, Cambridge, Massachusetts, United States.
Hastie, T., Friedman, J., & Tibshirani, R. (2001). The Elements of Statistical Learning. Springer Series in Statistics, New York, United States. doi:10.1007/978-0-387-21606-5.
Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and Statistical Modeling with Python. Proceedings of the 9th Python in Science Conference. doi:10.25080/majora-92bf1922-011.
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. doi:10.1037/h0042519.
Ramchoun, H., Idrissi, M. A. J., Ghanou, Y., & Ettaouil, M. (2017). Multilayer Perceptron. Proceedings of the 2nd International Conference on Big Data, Cloud and Applications. doi:10.1145/3090354.3090427.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning Internal Representations by Error Propagation. Readings in Cognitive Science, 399–421, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-1-4832-1446-7.50035-2.
Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3–31. doi:10.1016/s0167-7012(00)00201-3.
Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning. Springer, New York, united States.
Chollet, F. (2015). About Keras. Available online: https://keras.io/about/ (accessed on June 2022)..
Narkhede, M. V., Bartakke, P. P., & Sutaone, M. S. (2021). A review on weight initialization strategies for neural networks. Artificial Intelligence Review, 55(1), 291–322. doi:10.1007/s10462-021-10033-z.
Glorot, X., & Bengio, Y. (2010, March). Understanding the difficulty of training deep feedforward neural networks. Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, 249-256, 13-15 May, 2010, Chia Laguna Resort, Sardinia, Italy.
Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. doi:10.1038/nature14539.
Garbin, C., Zhu, X., & Marques, O. (2020). Dropout vs. batch normalization: an empirical study of their impact to deep learning. Multimedia Tools and Applications, 79(19–20), 12777–12815. doi:10.1007/s11042-019-08453-9.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56), 1929–1958.
Kandel, I., & Castelli, M. (2020). The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset. ICT Express, 6(4), 312–315. doi:10.1016/j.icte.2020.04.010.
Bengio, Y. (2012). Practical Recommendations for Gradient-Based Training of Deep Architectures. Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, 7700, Springer, Berlin, Germany. doi:10.1007/978-3-642-35289-8_26.
Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. 32nd International Conference on Machine Learning, 448–456, 6-11 July, 2015, Lille, France.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 doi:10.48550/arXiv.1412.6980.
Bottou, L. (2012). Stochastic Gradient Descent Tricks. Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, 7700, Springer, Berlin, Germany. doi:10.1007/978-3-642-35289-8_25.
Tibshirani, R. (1997). The lasso method for variable selection in the Cox model. Statistics in medicine, 16(4), 385-395. doi:10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3.
Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2018). Hyperband: A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning Research, 18, 1–52.
Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13, 281–305.
Jamieson, K., & Talwalkar, A. (2016). Non-stochastic best arm identification and hyperparameter optimization. Proceeding of the 19th International Conference on Artificial intelligence and Statistics (AISTATS), 240-248, 9-11 May, Cadiz, Spain.
Brochu, E., Cora, V. M., & De Freitas, N. (2010). A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint. doi:10.48550/arXiv.1012.2599
Kumar, S., & Srivistava, A. N. (2012). Bootstrap prediction intervals in non-parametric regression with applications to anomaly detection. 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 12-16 August, 2012, Beijing, China.
Pearce, T., Brintrup, A., Zaki, M., & Neely, A. (2018). High-quality prediction intervals for deep learning: A distribution-free, ensembled approach. Proceeding of the 35th International Conference International Conference on Machine Learning, 10-15 july, 2018, Stockholm, Sweden.
Rocha-Trindade, M. B. (2020). Chinese Community in Portugal: History , Migration , and Business. Gaudium Scendi Universidade Católica Portuguesa, 19, 15–42. doi: doi:10.34632/gaudiumsciendi.2020.10065.
DOI: 10.28991/ESJ-2022-SIED-012
Refbacks
- There are currently no refbacks.