Modified Weighted Mean Filter to Improve the Baseline Reduction Approach for Emotion Recognition

I Made Agus Wirawan, Retantyo Wardoyo, Danang Lelono, Sri Kusrohmaniah


Participants' emotional reactions are strongly influenced by several factors such as personality traits, intellectual abilities, and gender. Several studies have examined the baseline reduction approach for emotion recognition using electroencephalogram signal patterns containing external and internal interferences, which prevented it from representing participants’ neutral state. Therefore, this study proposes two solutions to overcome this problem. Firstly, it offers a modified weighted mean filter method to eliminate the interference of the electroencephalogram baseline signal. Secondly, it determines an appropriate baseline reduction method to characterize emotional reactions after the smoothing process. Data collected from four scenarios conducted on three datasets was used to reduce the interference and amplitude of the electroencephalogram signals. The result showed that the smoothing process can eliminate interference and lower the signal's amplitude. Based on the three baseline reduction methods, the Relative Difference method is appropriate for characterizing emotional reactions in different electroencephalogram signal patterns and has higher accuracy. Based on testing on the DEAP dataset, these proposed methods achieved accuracies of 97.14, 99.70, and 96.70% for the four categories of emotions, the two categories of arousal, and the two categories of valence, respectively. Furthermore, on the DREAMER dataset, these proposed methods achieved accuracies of 89.71, 97.63, and 96.58% for the four categories of emotions, the two categories of arousal, and the two categories of valence, respectively. Finally, on the AMIGOS dataset, these proposed methods achieved accuracies of 99.59, 98.20, and 99.96% for the four categories of emotions, the two categories of arousal, and the two categories of valence, respectively.


Doi: 10.28991/ESJ-2022-06-06-03

Full Text: PDF


Electroencephalogram; Emotion Recognition; Modified Weighted Mean Filter; Differential Entropy; 3D Cube; Baseline Reduction; Difference; Relative Difference; Fractional Difference; Convolution Neural Network.


Zhang, J., Yin, Z., Chen, P., & Nichele, S. (2020). Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review. Information Fusion, 59, 103–126. doi:10.1016/j.inffus.2020.01.011.

Tyng, C. M., Amin, H. U., Saad, M. N. M., & Malik, A. S. (2017). The influences of emotion on learning and memory. Frontiers in Psychology, 8. doi:10.3389/fpsyg.2017.01454.

Made Agus Wirawan, I., Wardoyo, R., & Lelono, D. (2022). The challenges of emotion recognition methods based on electroencephalogram signals: A literature review. International Journal of Electrical and Computer Engineering, 12(2), 1508–1519. doi:10.11591/ijece.v12i2.pp1508-1519.

Yang, Y., Wu, Q., Fu, Y., Chen, X. (2018). Continuous Convolutional Neural Network with 3D Input for EEG-Based Emotion Recognition. Neural Information Processing. ICONIP 2018, Lecture Notes in Computer Science, 11307. Springer, Cham, Switzerland. doi:10.1007/978-3-030-04239-4_39.

Gasper, K., Spencer, L. A., & Hu, D. (2019). Does Neutral Affect Exist? How Challenging Three Beliefs About Neutral Affect Can Advance Affective Research. Frontiers in Psychology, 10. doi:10.3389/fpsyg.2019.02476.

Narayana, S., Prasad, R. R. V., & Warmerdam, K. (2019). Mind your thoughts: BCI using single EEG electrode. IET Cyber-Physical Systems: Theory and Applications, 4(2), 164–172. doi:10.1049/iet-cps.2018.5059.

Zhuang, N., Zeng, Y., Yang, K., Zhang, C., Tong, L., & Yan, B. (2018). Investigating patterns for self-induced emotion recognition from EEG signals. Sensors (Switzerland), 18(3), 1–22. doi:10.3390/s18030841.

Yang, Y., Wu, Q., Qiu, M., Wang, Y., & Chen, X. (2018). Emotion Recognition from Multi-Channel EEG through Parallel Convolutional Recurrent Neural Network. 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil. doi:10.1109/ijcnn.2018.8489331.

Cheng, J., Chen, M., Li, C., Liu, Y., Song, R., Liu, A., & Chen, X. (2021). Emotion Recognition from Multi-Channel EEG via Deep Forest. IEEE Journal of Biomedical and Health Informatics, 25(2), 453–464. doi:10.1109/JBHI.2020.2995767.

Liu, Y., Ding, Y., Li, C., Cheng, J., Song, R., Wan, F., & Chen, X. (2020). Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network. Computers in Biology and Medicine, 123, 103927. doi:10.1016/j.compbiomed.2020.103927.

Zhao, Y., Yang, J., Lin, J., Yu, D., & Cao, X. (2020). A 3D Convolutional Neural Network for Emotion Recognition based on EEG Signals. 2020 International Joint Conference on Neural Networks (IJCNN). doi:10.1109/ijcnn48605.2020.9207420.

Agus Wirawan, I. M., Wardoyo, R., Lelono, D., Kusrohmaniah, S., & Asrori, S. (2021). Comparison of Baseline Reduction Methods for Emotion Recognition Based on Electroencephalogram Signals. 2021 6th International Conference on Informatics and Computing (ICIC 2021). doi:10.1109/ICIC54025.2021.9632948.

Jiang, X., Bian, G. Bin, & Tian, Z. (2019). Removal of artifacts from EEG signals: A review. Sensors (Switzerland), 19(5), 1–18,. doi:10.3390/s19050987.

Usakli, A. B. (2010). Improvement of EEG signal acquisition: An electrical aspect for state of the Art of front end. Computational Intelligence and Neuroscience, 2010. doi:10.1155/2010/630649.

Kawala-Sterniuk, A., Podpora, M., Pelc, M., Blaszczyszyn, M., Gorzelanczyk, E. J., Martinek, R., & Ozana, S. (2020). Comparison of Smoothing Filters in Analysis of EEG Data for the Medical Diagnostics Purposes. Sensors, 20(3), 807. doi:10.3390/s20030807.

Katsigiannis, S., & Ramzan, N. (2018). DREAMER: A Database for Emotion Recognition through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices. IEEE Journal of Biomedical and Health Informatics, 22(1), 98–107. doi:10.1109/JBHI.2017.2688239.

Athavipach, C., Pan-Ngum, S., & Israsena, P. (2019). A wearable in-ear EEG device for emotion monitoring. Sensors (Switzerland), 19(18), 1–16,. doi:10.3390/s19184014.

Jin, Y.-M., Luo, Y.-D., Zheng, W.-L., & Lu, B.-L. (2017). EEG-based emotion recognition using domain adaptation network. 2017 International Conference on Orange Technologies (ICOT). doi:10.1109/icot.2017.8336126.

Al-Shargie, F., Tariq, U., Alex, M., Mir, H., & Al-Nashash, H. (2019). Emotion Recognition Based on Fusion of Local Cortical Activations and Dynamic Functional Networks Connectivity: An EEG Study. IEEE Access, 7, 143550–143562. doi:10.1109/access.2019.2944008.

Song, T., Zheng, W., Lu, C., Zong, Y., Zhang, X., & Cui, Z. (2019). MPED: A Multi-Modal Physiological Emotion Database for Discrete Emotion Recognition. IEEE Access, 7, 12177–12191. doi:10.1109/access.2019.2891579.

Thammasan, N., Moriyama, K., Fukui, K., & Numao, M. (2016). Continuous Music-Emotion Recognition Based on Electroencephalogram. IEICE Transactions on Information and Systems, E99. D(4), 1234–1241. doi:10.1587/transinf.2015edp7251.

Kowalski, P. & Smyk, R., 2018. Review and comparison of smoothing algorithms for one-dimensional data noise reduction. 2018 International Interdisciplinary PhD Workshop (IIPhDW). doi:10.1109/iiphdw.2018.8388373.

Zhong, X., Yin, Z., & Zhang, J. (2020). Cross-Subject emotion recognition from EEG using Convolutional Neural Networks. 2020 39th Chinese Control Conference (CCC). doi:10.23919/ccc50068.2020.9189559.

Veeramallu, G. K. P., Anupalli, Y., Jilumudi, S. kumar, & Bhattacharyya, A. (2019). EEG based automatic emotion recognition using EMD and Random forest classifier. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). doi:10.1109/icccnt45670.2019.8944903.

Kawintiranon, K., Buatong, Y., & Vateekul, P. (2016). Online music emotion prediction on multiple sessions of EEG data using SVM. 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE). doi:10.1109/JCSSE.2016.7748921.

Koelstra, S., Mühl, C., Soleymani, M., Lee, J. S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., & Patras, I. (2012). DEAP: A database for emotion analysis; using physiological signals. IEEE Transactions on Affective Computing, 3(1), 18–31. doi:10.1109/T-AFFC.2011.15.

Miranda-Correa, J. A., Abadi, M. K., Sebe, N., & Patras, I. (2021). AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups. IEEE Transactions on Affective Computing, 12(2), 479–493. doi:10.1109/TAFFC.2018.2884461.

Pane, E. S., Wibawa, A. D., & Pumomo, M. H. (2018). Channel Selection of EEG Emotion Recognition using Stepwise Discriminant Analysis. 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM). doi:10.1109/CENIM.2018.8711196.

Chen, D. W., Miao, R., Yang, W. Q., Liang, Y., Chen, H. H., Huang, L., ... & Han, N. (2019). A feature extraction method based on differential entropy and linear discriminant analysis for emotion recognition. Sensors, 19(7). doi:10.3390/s19071631.

Jiang, H., Jia, J. (2020). Research on EEG Emotional Recognition Based on LSTM. Bio-inspired Computing: Theories and Applications. BIC-TA 2019, Communications in Computer and Information Science, 1160. Springer, Singapore. doi:10.1007/978-981-15-3415-7_34.

Lelono, D., Nuradi, H., Satriyo, M. R., Widodo, T. W., Dharmawan, A., & Istiyanto, J. E. (2019). Comparison of Difference, Relative and Fractional Methods for Classification of the Black Tea Based on Electronic Nose. 2019 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM). doi:10.1109/cenim48368.2019.8973308.

Xu, T., Zhou, Y., Wang, Z., & Peng, Y. (2018). Learning Emotions EEG-based Recognition and Brain Activity: A Survey Study on BCI for Intelligent Tutoring System. Procedia Computer Science, 130, 376–382. doi:10.1016/j.procs.2018.04.056.

Al-Odienat, A. I., & Al-Mbaideen, A. A. (2015). Optimal length determination of the moving average filter for power system applications. International Journal of Innovative Computing, Information and Control, 11(2), 691–705.

Alarcão, S. M., & Fonseca, M. J. (2019). Emotions recognition using EEG signals: A survey. IEEE Transactions on Affective Computing, 10(3), 374–393. doi:10.1109/TAFFC.2017.2714671.

Bhandari, N. K., & Jain, M. (2020). Emotion recognition and classification using EEG: A review. International Journal of Scientific and Technology Research, 9(2), 1827–1836.

Aytekin, A. (2021). Comparative analysis of normalization techniques in the context of MCDM problems. Decision Making: Applications in Management and Engineering, 4(2), 1–25. doi:10.31181/dmame210402001a.

Divayana, D. G. H., Ariawan, I. P. W., Ardana, I. M., & Wayan Arta Suyasa, P. (2021). Utilization of alkin-wp-based digital library evaluation software as evaluation tool of digital library effectiveness. Emerging Science Journal, 5(5), 731–746. doi:10.28991/esj-2021-01308.

Wardoyo, R., Wirawan, I. M. A., & Pradipta, I. G. A. (2022). Oversampling Approach Using Radius-SMOTE for Imbalance Electroencephalography Datasets. Emerging Science Journal, 6(2), 382–398. doi:10.28991/ESJ-2022-06-02-013.

Liu, N., Fang, Y., Li, L., Hou, L., Yang, F., & Guo, Y. (2018). Multiple feature fusion for automatic emotion recognition using EEG signals. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). doi:10.1109/ICASSP.2018.8462518.

Zangeneh Soroush, M., Maghooli, K., Setarehdan, S. K., & Nasrabadi, A. M. (2019). A novel EEG-based approach to classify emotions through phase space dynamics. Signal, Image and Video Processing, 13(6), 1149-1156. doi:10.1007/s11760-019-01455-y.

Zheng, W. L., Zhu, J. Y., & Lu, B. L. (2019). Identifying stable patterns over time for emotion recognition from EEG. IEEE Transactions on Affective Computing, 10(3), 417–429. doi:10.1109/TAFFC.2017.2712143.

Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic routing between capsules. Advances in neural information processing systems 30 (NIPS 2017), 4-9 December, 2017, Long Beach, United States.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-06-03


  • There are currently no refbacks.

Copyright (c) 2022 I Made Agus Wirawan, Retantyo Wardoyo, Danang Lelono, Sri Kusrohmaniah