A Comparative Study of Collaborative Filtering in Product Recommendation

Agori Argyro Patoulia, Athanasios Kiourtis, Argyro Mavrogiorgou, Dimosthenis Kyriazis

Abstract


Product recommendation is considered a well-known technique for bringing customers and products together. With applications in music, electronic shops, or almost any platform the user daily deals with, the recommendation system’s sole scope is to help customers and attract new ones to discover new products. Through product recommendation, transaction costs can also be decreased, improving overall decision-making and quality. To perform recommendations, a recommendation system must utilize customer feedback, such as habits, interests, prior transactions as well as information used in customer profiling, and finally deliver suggestions. Hence, data is the key factor in choosing the appropriate recommendation method and drawing specific suggestions. This research investigates the data challenges of recommendation systems, specifying collaborative-based, content-based, and hybrid-based recommendations. In this context, collaborative filtering is being explored, with the Surprise library and LightFM embeddings being analysed and compared on top of foodservice transactional data. The involved algorithms’ metrics are being identified and parameterized, while hyperparameters are being tuned properly on top of this transactional data, concluding that LightFM provides more efficient recommendation results following the evaluation’s precision and recall outcomes. Nevertheless, even though the Surprise library outperforms, it should be used when constructing user-friendly models, requiring low code and low technicalities.

 

Doi: 10.28991/ESJ-2023-07-01-01

Full Text: PDF


Keywords


Recommendation Systems; Collaborative Filtering; Surprise Library; LightFM; Hyperparameters Tuning.

References


Dhawad, A., Sarkar, S., Agarwal, A., & Darlapudi, R. K. (2021). Recommendation Engines: Traditional vs. Deep Learning Approaches. 2021 6th International Conference on Computing, Communication and Security (ICCCS), Las Vegas, NV, USA, IEEE. doi:10.1109/icccs51487.2021.9776342.

Afolabi, I. T., Makinde, O. S., & Oladipupo, O. O. (2019). Semantic Web mining for Content-Based Online Shopping Recommender Systems. International Journal of Intelligent Information Technologies, 15(4), 41–56. doi:10.4018/IJIIT.2019100103.

Pantano, E., Priporas, C. V., Stylos, N., & Dennis, C. (2019). Facilitating tourists’ decision making through open data analyses: A novel recommender system. Tourism Management Perspectives, 31, 323–331. doi:10.1016/j.tmp.2019.06.003.

Mehta, Y., Singhania, A., Tyagi, A., Shrivastava, P., Mali, M. (2020). A Comparative Study of Recommender Systems. ICDSMLA 2019, Lecture Notes in Electrical Engineering, 601. Springer, Singapore. doi:10.1007/978-981-15-1420-3_112.

Sharma, J., Sharma, K., Garg, K., & Sharma, A. K. (2021). Product recommendation system a comprehensive review. IOP Conference Series: Materials Science and Engineering, 1022(1), 12021. doi:10.1088/1757-899X/1022/1/012021.

Lebanoff, L., Peterson, C., Dechev, D. (2019). Check-Wait-Pounce: Increasing Transactional Data Structure Throughput by Delaying Transactions. Distributed Applications and Interoperable Systems, DAIS 2019, Lecture Notes in Computer Science, 11534. Springer, Cham, Switzerland. doi:10.1007/978-3-030-22496-7_2.

Natarajan, S., Vairavasundaram, S., Natarajan, S., & Gandomi, A. H. (2020). Resolving data sparsity and cold start problem in collaborative filtering recommender system using Linked Open Data. Expert Systems with Applications, 149, 113248. doi:10.1016/j.eswa.2020.113248.

Sadman, N., Gupta, K. D., Haque, A., Poudyal, S., & Sen, S. (2020). Detect Review Manipulation by Leveraging Reviewer Historical Stylometrics in Amazon, Yelp, Facebook and Google Reviews. Proceedings of the 2020 The 6th International Conference on E-Business and Applications. doi:10.1145/3387263.3387272.

Hug, N. (2020). Surprise: A Python library for recommender systems. Journal of Open Source Software, 5(52), 2174. doi:10.21105/joss.02174.

Cui, Z., Zhao, P., Hu, Z., Cai, X., Zhang, W., & Chen, J. (2021). An improved matrix factorization based model for many-objective optimization recommendation. Information Sciences, 579, 1–14. doi:10.1016/j.ins.2021.07.077.

Shriver, D. (2018). Toward the development of richer properties for recommender systems. Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings. doi:10.1145/3183440.3195082.

Tagliabue, J., Yu, B., & Bianchi, F. (2020). The Embeddings That Came in From the Cold: Improving Vectors for New and Rare Products with Content-Based Inference. RecSys '20: Proceedings of the 14th ACM Conference on Recommender Systems. doi:10.1145/3383313.3411477.

Wu, L., Quan, C., Li, C., Wang, Q., Zheng, B., & Luo, X. (2019). A context-aware user-item representation learning for item recommendation. ACM Transactions on Information Systems, 37(2), 1–29. doi:10.1145/3298988.

Zhang, F., Mao, J., Liu, Y., Xie, X., Ma, W., Zhang, M., & Ma, S. (2020). Models versus Satisfaction. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. doi:10.1145/3397271.3401162.

Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., & He, X. (2020). Bias and debias in recommender system: A survey and future directions. arXiv preprint arXiv:2010.03240. doi:10.48550/arXiv.2010.03240.

Bisong, E. (2019). More Supervised Machine Learning Techniques with Scikit-learn. In: Building Machine Learning and Deep Learning Models on Google Cloud Platform, Apress, Berkeley, United States. doi:10.1007/978-1-4842-4470-8_24.

Kulkarni, N. (2020). Customer Behaviour Prediction. PhD Thesis, National College of Ireland, Dublin, Republic of Ireland.

Zhang, M., Hao, B., Ge, Q., Zhu, J., Zheng, R., & Wu, Q. (2022). Distributed Adaptive Subgradient Algorithms for Online Learning Over Time-Varying Networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(7), 4518–4529. doi:10.1109/TSMC.2021.3097714.

Kokilambal, S. (2021). Intelligent Content Based Image Retrieval Model Using Adadelta Optimized Residual Network. International Conference on System, Computation, Automation and Networking (ICSCAN), Puducherry, India. doi:10.1109/icscan53069.2021.9526470.

Jiang, G., Wang, H., Chen, J., Wang, H., Lian, D., & Chen, E. (2021). xLightFM: Extremely Memory-Efficient Factorization Machine. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. doi:10.1145/3404835.3462941.

Vaz, C. M. P., de Resende, J. M., Franchini, J. C., Debiasi, H., & Nunes, M. R. (2022). Evaluation and recommendations for the use of dynamic penetrometers. Soil and Tillage Research, 220, 105373. doi:10.1016/j.still.2022.105373.

Wei, Y., Wang, X., Li, Q., Nie, L., Li, Y., Li, X., & Chua, T.-S. (2021). Contrastive Learning for Cold-Start Recommendation. Proceedings of the 29th ACM International Conference on Multimedia. doi:10.1145/3474085.3475665.

Lytra, G., Mavrogiorgou, A., Kiourtis, A., & Kyriazis, D. (2021), Hyperparameter Optimization on Classification and Regression Algorithms. IOSR Journal of Computer Engineering (IOSR-JCE), 23(4), 34-50. doi:10.9790/0661-2304013450.

Mavrogiorgou, A., Kiourtis, A., Manias, G., & Kyriazis, D. (2021). Adjustable data cleaning towards extracting statistical information. Public Health and Informatics, Studies in Health Technology and Informatics, 1013–1014, IOS Press, Amsterdam, Netherlands. doi:10.3233/SHTI210332.

Kiourtis, A., Mavrogiorgou, A., Kyriazis, D., Maglogiannis, I., & Themistocleous, M. (2016). Towards Data Interoperability: Turning Domain Specific Knowledge to Agnostic across the Data Lifecycle. 2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA). doi:10.1109/waina.2016.69.

Kiourtis, A., Karamolegkos, P., Karabetian, A., Voulgaris, K., Poulakis, Y., Mavrogiorgou, A., & Kyriazis, D. (2022). An Autoscaling Platform Supporting Graph Data Modelling Big Data Analytics. Studies in Health Technology and Informatics, 295, 376–379. doi:10.3233/SHTI220743.

Mavrogiorgou, A., Kleftakis, S., Mavrogiorgos, K., Zafeiropoulos, N., Menychtas, A., Kiourtis, A., Maglogiannis, I., & Kyriazis, D. (2021). beHEALTHIER: A Microservices Platform for Analyzing and Exploiting Healthcare Data. 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS). doi:10.1109/cbms52027.2021.00078.


Full Text: PDF

DOI: 10.28991/ESJ-2023-07-01-01

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Agori Argyro Patoulia, Athanasios Kiourtis, Argyro Mavrogiorgou, Dimosthenis Kyriazis