A Comparative Study of Collaborative Filtering in Product Recommendation
Abstract
Doi: 10.28991/ESJ-2023-07-01-01
Full Text: PDF
Keywords
References
Dhawad, A., Sarkar, S., Agarwal, A., & Darlapudi, R. K. (2021). Recommendation Engines: Traditional vs. Deep Learning Approaches. 2021 6th International Conference on Computing, Communication and Security (ICCCS), Las Vegas, NV, USA, IEEE. doi:10.1109/icccs51487.2021.9776342.
Afolabi, I. T., Makinde, O. S., & Oladipupo, O. O. (2019). Semantic Web mining for Content-Based Online Shopping Recommender Systems. International Journal of Intelligent Information Technologies, 15(4), 41–56. doi:10.4018/IJIIT.2019100103.
Pantano, E., Priporas, C. V., Stylos, N., & Dennis, C. (2019). Facilitating tourists’ decision making through open data analyses: A novel recommender system. Tourism Management Perspectives, 31, 323–331. doi:10.1016/j.tmp.2019.06.003.
Mehta, Y., Singhania, A., Tyagi, A., Shrivastava, P., Mali, M. (2020). A Comparative Study of Recommender Systems. ICDSMLA 2019, Lecture Notes in Electrical Engineering, 601. Springer, Singapore. doi:10.1007/978-981-15-1420-3_112.
Sharma, J., Sharma, K., Garg, K., & Sharma, A. K. (2021). Product recommendation system a comprehensive review. IOP Conference Series: Materials Science and Engineering, 1022(1), 12021. doi:10.1088/1757-899X/1022/1/012021.
Lebanoff, L., Peterson, C., Dechev, D. (2019). Check-Wait-Pounce: Increasing Transactional Data Structure Throughput by Delaying Transactions. Distributed Applications and Interoperable Systems, DAIS 2019, Lecture Notes in Computer Science, 11534. Springer, Cham, Switzerland. doi:10.1007/978-3-030-22496-7_2.
Natarajan, S., Vairavasundaram, S., Natarajan, S., & Gandomi, A. H. (2020). Resolving data sparsity and cold start problem in collaborative filtering recommender system using Linked Open Data. Expert Systems with Applications, 149, 113248. doi:10.1016/j.eswa.2020.113248.
Sadman, N., Gupta, K. D., Haque, A., Poudyal, S., & Sen, S. (2020). Detect Review Manipulation by Leveraging Reviewer Historical Stylometrics in Amazon, Yelp, Facebook and Google Reviews. Proceedings of the 2020 The 6th International Conference on E-Business and Applications. doi:10.1145/3387263.3387272.
Hug, N. (2020). Surprise: A Python library for recommender systems. Journal of Open Source Software, 5(52), 2174. doi:10.21105/joss.02174.
Cui, Z., Zhao, P., Hu, Z., Cai, X., Zhang, W., & Chen, J. (2021). An improved matrix factorization based model for many-objective optimization recommendation. Information Sciences, 579, 1–14. doi:10.1016/j.ins.2021.07.077.
Shriver, D. (2018). Toward the development of richer properties for recommender systems. Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings. doi:10.1145/3183440.3195082.
Tagliabue, J., Yu, B., & Bianchi, F. (2020). The Embeddings That Came in From the Cold: Improving Vectors for New and Rare Products with Content-Based Inference. RecSys '20: Proceedings of the 14th ACM Conference on Recommender Systems. doi:10.1145/3383313.3411477.
Wu, L., Quan, C., Li, C., Wang, Q., Zheng, B., & Luo, X. (2019). A context-aware user-item representation learning for item recommendation. ACM Transactions on Information Systems, 37(2), 1–29. doi:10.1145/3298988.
Zhang, F., Mao, J., Liu, Y., Xie, X., Ma, W., Zhang, M., & Ma, S. (2020). Models versus Satisfaction. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. doi:10.1145/3397271.3401162.
Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., & He, X. (2020). Bias and debias in recommender system: A survey and future directions. arXiv preprint arXiv:2010.03240. doi:10.48550/arXiv.2010.03240.
Bisong, E. (2019). More Supervised Machine Learning Techniques with Scikit-learn. In: Building Machine Learning and Deep Learning Models on Google Cloud Platform, Apress, Berkeley, United States. doi:10.1007/978-1-4842-4470-8_24.
Kulkarni, N. (2020). Customer Behaviour Prediction. PhD Thesis, National College of Ireland, Dublin, Republic of Ireland.
Zhang, M., Hao, B., Ge, Q., Zhu, J., Zheng, R., & Wu, Q. (2022). Distributed Adaptive Subgradient Algorithms for Online Learning Over Time-Varying Networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(7), 4518–4529. doi:10.1109/TSMC.2021.3097714.
Kokilambal, S. (2021). Intelligent Content Based Image Retrieval Model Using Adadelta Optimized Residual Network. International Conference on System, Computation, Automation and Networking (ICSCAN), Puducherry, India. doi:10.1109/icscan53069.2021.9526470.
Jiang, G., Wang, H., Chen, J., Wang, H., Lian, D., & Chen, E. (2021). xLightFM: Extremely Memory-Efficient Factorization Machine. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. doi:10.1145/3404835.3462941.
Vaz, C. M. P., de Resende, J. M., Franchini, J. C., Debiasi, H., & Nunes, M. R. (2022). Evaluation and recommendations for the use of dynamic penetrometers. Soil and Tillage Research, 220, 105373. doi:10.1016/j.still.2022.105373.
Wei, Y., Wang, X., Li, Q., Nie, L., Li, Y., Li, X., & Chua, T.-S. (2021). Contrastive Learning for Cold-Start Recommendation. Proceedings of the 29th ACM International Conference on Multimedia. doi:10.1145/3474085.3475665.
Lytra, G., Mavrogiorgou, A., Kiourtis, A., & Kyriazis, D. (2021), Hyperparameter Optimization on Classification and Regression Algorithms. IOSR Journal of Computer Engineering (IOSR-JCE), 23(4), 34-50. doi:10.9790/0661-2304013450.
Mavrogiorgou, A., Kiourtis, A., Manias, G., & Kyriazis, D. (2021). Adjustable data cleaning towards extracting statistical information. Public Health and Informatics, Studies in Health Technology and Informatics, 1013–1014, IOS Press, Amsterdam, Netherlands. doi:10.3233/SHTI210332.
Kiourtis, A., Mavrogiorgou, A., Kyriazis, D., Maglogiannis, I., & Themistocleous, M. (2016). Towards Data Interoperability: Turning Domain Specific Knowledge to Agnostic across the Data Lifecycle. 2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA). doi:10.1109/waina.2016.69.
Kiourtis, A., Karamolegkos, P., Karabetian, A., Voulgaris, K., Poulakis, Y., Mavrogiorgou, A., & Kyriazis, D. (2022). An Autoscaling Platform Supporting Graph Data Modelling Big Data Analytics. Studies in Health Technology and Informatics, 295, 376–379. doi:10.3233/SHTI220743.
Mavrogiorgou, A., Kleftakis, S., Mavrogiorgos, K., Zafeiropoulos, N., Menychtas, A., Kiourtis, A., Maglogiannis, I., & Kyriazis, D. (2021). beHEALTHIER: A Microservices Platform for Analyzing and Exploiting Healthcare Data. 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS). doi:10.1109/cbms52027.2021.00078.
DOI: 10.28991/ESJ-2023-07-01-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Agori Argyro Patoulia, Athanasios Kiourtis, Argyro Mavrogiorgou, Dimosthenis Kyriazis