Fitting Multi-Layer Feed Forward Neural Network and Autoregressive Integrated Moving Average for Dhaka Stock Exchange Price Predicting
Abstract
Doi: 10.28991/ESJ-2022-06-05-09
Full Text: PDF
Keywords
References
Tsai, C. F., & Hsiao, Y. C. (2010). Combining multiple feature selection methods for stock prediction: Union, intersection, and multi-intersection approaches. Decision Support Systems, 50(1), 258–269. doi:10.1016/j.dss.2010.08.028.
Chowdhury, A. R. (2021). Testing Capital Asset Pricing Model (CAPM) on Dhaka Stock Exchange. doi:10.21203/rs.3.rs-573032/v2.
Ravichandra, T., Thingom, C. (2016). Stock Price Forecasting Using ANN Method. Information Systems Design and Intelligent Applications. Advances in Intelligent Systems and Computing, 435, Springer, New Delhi, India. doi:10.1007/978-81-322-2757-1_59.
Di Persio, L., & Honchar, O. (2016). Artificial neural networks architectures for stock price prediction: Comparisons and applications. International Journal of Circuits, Systems and Signal Processing, 10(2016), 403–413.
Jasic, T., & Wood, D. (2004). The profitability of daily stock market indices trades based on neural network predictions: Case study for the S and P 500, the DAX, the TOPIX and the FTSE in the period 1965-1999. Applied Financial Economics, 14(4), 285–297. doi:10.1080/0960310042000201228.
Ticknor, J. L. (2013). A Bayesian regularized artificial neural network for stock market forecasting. Expert Systems with Applications, 40(14), 5501–5506. doi:10.1016/j.eswa.2013.04.013.
Altay, E. (2005). Stock Market Forecasting: Artificial Neural Network and Linear Regression Comparison in an Emerging Market. Journal of Financial Management and Analysis, 18(2), 8–33.
Dutta, G., Jha, P., Laha, A. K., & Mohan, N. (2006). Artificial Neural Network Models for Forecasting Stock Price Index in the Bombay Stock Exchange. Journal of Emerging Market Finance, 5(3), 283–295. doi:10.1177/097265270600500305.
Bildirici, M., & Ersin, Ö. Ö. (2009). Improving forecasts of GARCH family models with the artificial neural networks: An application to the daily returns in Istanbul Stock Exchange. Expert Systems with Applications, 36(4), 7355-7362. doi:10.1016/j.eswa.2008.09.051.
Hair Jr., J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate Data Analysis (5th Ed.).Prentice Hall, Hoboken, United States.
Antonopoulou, H., Mamalougou, V., & Theodorakopoulos, L. (2022). The Role of Economic Policy Uncertainty in Predicting Stock Return Volatility in the Banking Industry: A Big Data Analysis. Emerging Science Journal, 6(3), 569-577. doi:10.28991/ESJ-2022-06-03-011.
Patil, R. B. (1990). Neural networks as forecasting experts: test of dynamic modeling over time series data. PhD Thesis, Oklahoma State University, Stillwater, United States.
Di Persio, L., & Frigo, M. (2016). Gibbs sampling approach to regime switching analysis of financial time series. Journal of Computational and Applied Mathematics, 300, 43–55. doi:10.1016/j.cam.2015.12.010.
Tang, Z., de Almeida, C., & Fishwick, P. A. (1991). Time series forecasting using neural networks vs. Box-Jenkins methodology. Simulation, 57(5), 303–310. doi:10.1177/003754979105700508.
Yoon, Y., & Swales, G. (1991). Predicting stock price performance: A neural network approach. Proceedings of the Annual Hawaii International Conference on System Sciences, 4, 156–162. doi:10.1109/HICSS.1991.184055.
Hamid, S. A., & Iqbal, Z. (2004). Using neural networks for forecasting volatility of S&P 500 Index futures prices. Journal of Business Research, 57(10), 1116–1125. doi:10.1016/S0148-2963(03)00043-2.
Olson, D., & Mossman, C. (2003). Neural network forecasts of Canadian stock returns using accounting ratios. International Journal of Forecasting, 19(3), 453–465. doi:10.1016/S0169-2070(02)00058-4.
Cao, Q., Leggio, K. B., & Schniederjans, M. J. (2005). A comparison between Fama and French’s model and artificial neural networks in predicting the Chinese stock market. Computers and Operations Research, 32(10), 2499–2512. doi:10.1016/j.cor.2004.03.015.
de Faria, E. L., Albuquerque, M. P., Gonzalez, J. L., Cavalcante, J. T. P., & Albuquerque, M. P. (2009). Predicting the Brazilian stock market through neural networks and adaptive exponential smoothing methods. Expert Systems with Applications, 36(10), 12506–12509. doi:10.1016/j.eswa.2009.04.032.
Isfan, M., Menezes, R., & Mendes, D. A. (2010). Forecasting the Portuguese stock market time series by using artificial neural networks. Journal of Physics: Conference Series, 221, 012017. doi:10.1088/1742-6596/221/1/012017.
Jabin, S. (2014). Stock Market Prediction using Feed-forward Artificial Neural Network. International Journal of Computer Applications, 99(9), 4–8. doi:10.5120/17399-7959.
Vaisla, K. S., & Bhatt, A. K. (2010). An analysis of the performance of artificial neural network technique for stock market forecasting. International Journal on Computer Science and Engineering, 2(6), 2104-2109.
Hossain, M. M., Rajeb, M., & Shitan, M. (2011). Forecasting the market capital of dhaka stock exchange in bangladesh: a comparative study of garch and arima models. 2nd International Conference on Business and Economic Research (2nd ICBER 2011) Proceeding, 14-16 March, 2011, Langkawi Kedah, Malaysia.
Maqsood, H., Mehmood, I., Maqsood, M., Yasir, M., Afzal, S., Aadil, F., Selim, M. M., & Muhammad, K. (2020). A local and global event sentiment based efficient stock exchange forecasting using deep learning. International Journal of Information Management, 50, 432–451. doi:10.1016/j.ijinfomgt.2019.07.011.
Cheng, J., Huang, K., & Zheng, Z. (2020). Towards Better Forecasting by Fusing Near and Distant Future Visions. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04), 3593–3600. doi:10.1609/aaai.v34i04.5766.
Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the Institute of Statistical Mathematics, 21(1), 243–247. doi:10.1007/BF02532251.
Anaghi, M. F., & Norouzi, Y. (2012). A model for stock price forecasting based on ARMA systems. 2012 2nd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA). doi:10.1109/ICTEA.2012.6462880.
Groda, B., & Vrbka, J. (2017). Prediction of stock price developments using the Box-Jenkins method. SHS Web of Conferences, 39, 01007. doi:10.1051/shsconf/20173901007.
Senapati, M. R., Das, S., & Mishra, S. (2018). A Novel Model for Stock Price Prediction Using Hybrid Neural Network. Journal of the Institution of Engineers (India): Series B, 99(6), 555–563. doi:10.1007/s40031-018-0343-7.
Sayavong, L., Wu, Z., & Chalita, S. (2019). Research on Stock Price Prediction Method Based on Convolutional Neural Network. 2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). doi:10.1109/icvris.2019.00050.
Ma, Q. (2020). Comparison of ARIMA, ANN and LSTM for Stock Price Prediction. E3S Web of Conferences, 218, 1026. doi:10.1051/e3sconf/202021801026.
Hu, Z., Zhao, Y., & Khushi, M. (2021). A survey of forex and stock price prediction using deep learning. Applied System Innovation, 4(1), 1–30. doi:10.3390/ASI4010009.
Mehtab, S., & Sen, J. (2020). Stock Price Prediction Using Convolutional Neural Networks on a Multivariate Timeseries. TechRxiv. Preprint. doi:10.36227/techrxiv.15088734.
Mehtab, S., & Sen, J. (2020). A Robust Predictive Model for Stock Price Prediction Using Deep Learning and Natural Language Processing. Proceedings of the 7th International Conference on Business Analytics and Intelligence (BAICONF, 2019). doi:10.48550/arXiv.1912.07700.
Roy, M., & Ashrafuzzaman, M. (2015). EMH, Earning Multiples and Common Stock Valuation: The Case of Dhaka Stock Exchange. International Review of Business Research Papers, 11(2), 62–76. doi:10.21102/irbrp.2015.09.112.06.
Islam, A., & Khaled, M. (2005). Tests of weak‐form efficiency of the Dhaka stock exchange. Journal of Business Finance & Accounting, 32(7‐8), 1613-1624. doi:10.1111/j.0306-686x.2005.00642.x.
Ramesh, V. P., Baskaran, P., Krishnamoorthy, A., Damodaran, D., & Sadasivam, P. (2019). Back propagation neural network based big data analytics for a stock market challenge. Communications in Statistics-Theory and Methods, 48(14), 3622-3642. doi:10.1080/03610926.2018.1478103.
Hossain, M. M. (2019). Forecasting the General Index of Dhaka Stock Exchange. International Research Journal of Finance and Economics, 171(171), 20–37.
Chowdhury, S., Rubi, M. A., & Bijoy, M. H. I. (2021). Application of Artificial Neural Network for Predicting Agricultural Methane and CO2 Emissions in Bangladesh. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). doi:10.1109/icccnt51525.2021.9580106.
Rubi, M. A., Bijoy, M. H. I., & Bitto, A. K. (2021). Life Expectancy Prediction Based on GDP and Population Size of Bangladesh using Multiple Linear Regression and ANN Model. 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). doi:10.1109/ICCCNT51525.2021.9579594.
Bailey, D. L., & Thompson, D. (1990). Developing neural-network applications. AI Expert, 5(9), 34–41. doi:10.5555/87334.87341.
Klimasauskas, C.C. (1992). Applying Neural Networks, in Trippi, R.R. and E. Turban (Eds.), Neural Networks in Finance and Investing, Probus Publishing Company, Chicago, United States 47–72.
Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to time series analysis and forecasting. John Wiley & Sons, Hoboken, United States.
Koehler, A. B. (2001). Time Series Analysis and Forecasting with Applications of SAS and SPSS. International Journal of Forecasting, 17(2), 301–302. doi:10.1016/s0169-2070(01)00087-5.
Adebiyi, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Comparison of ARIMA and artificial neural networks models for stock price prediction. Journal of Applied Mathematics, 2014, 1-7. doi:10.1155/2014/614342.
DOI: 10.28991/ESJ-2022-06-05-09
Refbacks
- There are currently no refbacks.