Associated Patterns and Predicting Model of Life Trauma, Depression, and Suicide Using Ensemble Machine Learning
Abstract
Doi: 10.28991/ESJ-2022-06-04-02
Full Text: PDF
Keywords
References
Charak, R., Byllesby, B. M., Roley, M. E., Claycomb, M. A., Durham, T. A., Ross, J., Armour, C., & Elhai, J. D. (2016). Latent classes of childhood poly-victimization and associations with suicidal behavior among adult trauma victims: Moderating role of anger. Child Abuse and Neglect, 62, 19–28. doi:10.1016/j.chiabu.2016.10.010.
Alter, S., Wilson, C., Sun, S., Harris, R. E., Wang, Z., Vitale, A., Hazlett, E. A., Goodman, M., Ge, Y., Yehuda, R., Galfalvy, H., & Haghighi, F. (2021). The association of childhood trauma with sleep disturbances and risk of suicide in US veterans. Journal of Psychiatric Research, 136, 54–62. doi:10.1016/j.jpsychires.2021.01.030.
Pham, T. S., Qi, H., Chen, D., Chen, H., & Fan, F. (2021). Prevalences of and correlations between childhood trauma and depressive symptoms, anxiety symptoms, and suicidal behavior among institutionalized adolescents in Vietnam. Child Abuse and Neglect, 115, 105022. doi:10.1016/j.chiabu.2021.105022.
Behr Gomes Jardim, G., Novelo, M., Spanemberg, L., von Gunten, A., Engroff, P., Nogueira, E. L., & Cataldo Neto, A. (2018). Influence of childhood abuse and neglect subtypes on late-life suicide risk beyond depression. Child Abuse and Neglect, 80, 249–256. doi:10.1016/j.chiabu.2018.03.029.
Passos, I. C., Mwangi, B., Cao, B., Hamilton, J. E., Wu, M. J., Zhang, X. Y., Zunta-Soares, G. B., Quevedo, J., Kauer-Sant’Anna, M., Kapczinski, F., & Soares, J. C. (2016). Identifying a clinical signature of suicidality among patients with mood disorders: A pilot study using a machine learning approach. Journal of Affective Disorders, 193, 109–116. doi:10.1016/j.jad.2015.12.066.
Sekowski, M., Gambin, M., Cudo, A., Wozniak-Prus, M., Penner, F., Fonagy, P., & Sharp, C. (2020). The relations between childhood maltreatment, shame, guilt, depression and suicidal ideation in inpatient adolescents. Journal of Affective Disorders, 276, 667–677. doi:10.1016/j.jad.2020.07.056.
De Little, M. (2019). Where Words Can’t Reach: Neuroscience and the Satir Model in the Sand Tray (3rd Ed.). Dr. Madeleine De Little & Associates, Vancouver, Canada.
Vinney, C. (2019). Freud: ID, Ego, and Superego Explained. Available online: https://www.thoughtco.com/id-ego-and-superego-4582342/ (accessed on January 2022).
Trangkasombat, U., & Likanapichitkul, D. (1996). Depressive Symptoms in Children : A Study Using the Children’s Depression Inventory. Journal Psychiatry Association Thailand, 41(4), 221–230.
DeCou, C. R., & Lynch, S. M. (2019). Emotional reactivity, trauma-related distress, and suicidal ideation among adolescent inpatient survivors of sexual abuse. Child Abuse and Neglect, 89, 155–164. doi:10.1016/j.chiabu.2019.01.012.
Daray, F. M., Rojas, S. M., Bridges, A. J., Badour, C. L., Grendas, L., Rodante, D., Puppo, S., & Rebok, F. (2016). The independent effects of child sexual abuse and impulsivity on lifetime suicide attempts among female patients. Child Abuse and Neglect, 58, 91–98. doi:10.1016/j.chiabu.2016.06.011.
Hataiyusuk, S., & Apinuntavech, S. (2020). Adolescent suicide in Thailand: Incidence, causes and prevention. Siriraj Med Bull, 13(1), 40–47. (In Thai).
Visessuvanapoom, P., & Nakornthap, A. (2020). Life skills of opportunity expansion school students from different backgrounds. Journal of Research Methodology, 33(3), 257–274.
Kuroki, Y. (2015). Risk factors for suicidal behaviors among Filipino Americans: A data mining approach. American Journal of Orthopsychiatry, 85(1), 34–42. doi:10.1037/ort0000018.
DelPozo-Banos, M., John, A., Petkov, N., Berridge, D. M., Southern, K., Loyd, K. L., Jones, C., Spencer, S., & Travieso, C. M. (2018). Using neural networks with routine health records to identify suicide risk: Feasibility study. JMIR Mental Health, 5(2), e10144. doi:10.2196/10144.
Bae, S. M., Lee, S. A., & Lee, S. H. (2015). Prediction by data mining, of suicide attempts in Korean adolescents: A national study. Neuropsychiatric Disease and Treatment, 11, 2367–2375. doi:10.2147/NDT.S91111.
Kharkongor, C., & Nath, B. (2021). Itemset representation and mining the rules for huntington’s dataset. Emerging Science Journal, 5(3), 380–391. doi:10.28991/esj-2021-01284.
Chen, M. S., Han, J., & Yu, P. S. (1996). Data mining: An overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6), 866–883. doi:10.1109/69.553155.
Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. ACM sigmod record, 29(2), 1-12. doi:10.1145/335191.335372.
Fahrudin, T. M., Syarif, I., & Barakbah, A. R. (2017). Discovering patterns of NED-breast cancer based on association rules using apriori and FP-growth. Proceedings - International Electronics Symposium on Knowledge Creation and Intelligent Computing, IES-KCIC 2017, 2017-January, 132–139. doi:10.1109/KCIC.2017.8228576.
Haque, U. M., Kabir, E., & Khanam, R. (2021). Detection of child depression using machine learning methods. PLoS ONE, 16(12), e0261131. doi:10.1371/journal.pone.0261131.
Turska, E., Jurga, S., & Piskorski, J. (2021). Mood disorder detection in adolescents by classification trees, random forests and xgboost in presence of missing data. Entropy, 23(9), 1210. doi:10.3390/e23091210.
Nordin, N., Zainol, Z., Mohd Noor, M. H., & Lai Fong, C. (2021). A comparative study of machine learning techniques for suicide attempts predictive model. Health Informatics Journal, 27(1), 1460458221989395. doi:10.1177/1460458221989395.
Liu, Y., Gu, Y., Nguyen, J. C., Li, H., Zhang, J., Gao, Y., & Huang, Y. (2017). Symptom severity classification with gradient tree boosting. Journal of Biomedical Informatics, 75, S105–S111. doi:10.1016/j.jbi.2017.05.015.
Chuatai, N., & Chandarasiri, P. (2017). Development of small t trauma assessing instrument for secondary school students. Chulalongkorn Medical Journal, 61(1), 129-142.
Kovacs, M. (1992). Children’s depression inventory. Acta Paedopsychiatrica: International Journal of Child & Adolescent Psychiatry.
Tangseree, T., Arunpongpaisal, S., Chiravatkul, A., Krisanaprakornkit, T., Kittiwattanagul, K., Pratchayakhup, W., Lausuangkul, A., Kaewhao, S., Huttapanom, W., Pratchayakhup, P., & Mongkol, A. (2009). Development for depression and suicidal risk screening test (version 2009). J Psychiatr AssocThailand, 54(3), 287-298. (In Thai).
RapidMiner (2022). RapidMiner Studio version 9.8. Available online: https://rapidminer.com/ (accessed on April 2021).
Park, C., Park, I.-H., Yoo, T., Kim, H., Ryu, S., Lee, J. Y., Kim, J. M., & Kim, S. W. (2021). Association between Childhood Trauma and Suicidal Behavior in the General Population. Chonnam Medical Journal, 57(2), 126. doi:10.4068/cmj.2021.57.2.126.
Yin, H., Galfalvy, H., Zhang, B., Tang, W., Xin, Q., Li, E., Xue, X., Li, Q., Ye, J., Yan, N., & Mann, J. J. (2020). Interactions of the GABRG2 polymorphisms and childhood trauma on suicide attempt and related traits in depressed patients. Journal of Affective Disorders, 266, 447–455. doi:10.1016/j.jad.2020.01.126.
Shukla, M., Ahmad, S., Singh, J. V., Shukla, N. K., & Shukla, R. (2019). Factors Associated with Depression among School-going Adolescent Girls in a District of Northern India: A Cross-sectional Study. Indian Journal of Psychological Medicine, 41(1), 46–53. doi:10.4103/IJPSYM.IJPSYM_211_18.
Nalugya-Sserunjogi, J., Rukundo, G. Z., Ovuga, E., Kiwuwa, S. M., Musisi, S., & Nakimuli-Mpungu, E. (2016). Prevalence and factors associated with depression symptoms among school-going adolescents in Central Uganda. Child and Adolescent Psychiatry and Mental Health, 10(1), 2–8. doi:10.1186/s13034-016-0133-4.
Kaur, A., & Kaur, I. (2018). An empirical evaluation of classification algorithms for fault prediction in open source projects. Journal of King Saud University - Computer and Information Sciences, 30(1), 2–17. doi:10.1016/j.jksuci.2016.04.002.
Sawangarreerak, S., & Thanathamathee, P. (2020). Random forest with sampling techniques for handling imbalanced prediction of university student depression. Information, 11(11), 519. doi:10.3390/info11110519.
DOI: 10.28991/ESJ-2022-06-04-02
Refbacks
- There are currently no refbacks.