Deep Learning Based Gait Recognition Using Convolutional Neural Network in the COVID-19 Pandemic
Abstract
Doi: 10.28991/ESJ-2022-06-05-012
Full Text: PDF
Keywords
References
Kumar, D. (2020). Corona Virus: A Review of COVID-19. Eurasian Journal of Medicine and Oncology, 4(1), 8–25. doi:10.14744/ejmo.2020.51418.
Singhal, T. (2020). A review of coronavirus disease-2019 (COVID-19). The Indian journal of paediatrics, 87(4), 281-286. doi:10.1007/s12098-020-03263-6
Murray, M. P., Drought, A. B., & Kory, R. C. (1964). Walking patterns of normal men. The Journal of Bone & Joint Surgery, 46(2), 335-360. doi:10.2106/00004623-196446020-00009.
Kandel, I., Castelli, M., & Manzoni, L. (2022). Brightness as an Augmentation Technique for Image Classification. Emerging Science Journal, 6(4), 881-892. doi:10.28991/ESJ-2022-06-04-015.
Cutting, J. E., & Kozlowski, L. T. (1977). Recognizing friends by their walk: Gait perception without familiarity cues. Bulletin of the Psychonomic Society, 9(5), 353–356. doi:10.3758/BF03337021.
Zhang, Z., Hu, M., Wang, Y. (2011). A Survey of Advances in Biometric Gait Recognition. Biometric Recognition. CCBR 2011. Lecture Notes in Computer Science, 7098. Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-25449-9_19.
Lv, Z., Xing, X., Wang, K., & Guan, D. (2015). Class energy image analysis for video sensor-based gait recognition: A review. Sensors (Switzerland), 15(1), 932–964. doi:10.3390/s150100932.
Deng, M., Wang, C., Cheng, F., & Zeng, W. (2017). Fusion of spatial-temporal and kinematic features for gait recognition with deterministic learning. Pattern Recognition, 67(C), 186–200. doi:10.1016/j.patcog.2017.02.014.
Zhang, X., Sun, S., Li, C., Zhao, X., Hu, Y. (2017). DeepGait: A Learning Deep Convolutional Representation for Gait Recognition. Biometric Recognition. CCBR 2017. Lecture Notes in Computer Science, 10568. Springer, Cham, Switzerland. doi:10.1007/978-3-319-69923-3_48.
Castro, F. M., Marin-Jimenez, M. J., Guil, N., Lopez-Tapia, S., & Perez De La Blanca, N. (2017). Evaluation of CNN Architectures for Gait Recognition Based on Optical Flow Maps. 2017 International Conference of the Biometrics Special Interest Group (BIOSIG). doi:10.23919/BIOSIG.2017.8053503.
Habib, S., Khan, I., Aladhadh, S., Islam, M., & Khan, S. (2022). External Features-Based Approach to Date Grading and Analysis with Image Processing. Emerging Science Journal, 6(4), 694-704. doi:10.28991/ESJ-2022-06-04-03.
Jeevan, M., Jain, N., Hanmandlu, M., & Chetty, G. (2013). Gait recognition based on gait pal and pal entropy image. 2013 IEEE International Conference on Image Processing. doi:10.1109/ICIP.2013.6738864.
Zhang, C., Liu, W., Ma, H., & Fu, H. (2016). Siamese neural network based gait recognition for human identification. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). doi:10.1109/ICASSP.2016.7472194.
Das, D., & Chakrabarty, A. (2016). Human gait recognition using deep neural networks. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies - ICTCS. doi:10.1145/2905055.2905192.
Feng, Y., Li, Y., & Luo, J. (2016). Learning effective Gait features using LSTM. 2016 23rd International Conference on Pattern Recognition (ICPR). doi:10.1109/ICPR.2016.7899654.
Castro, F.M., Marín-Jiménez, M.J., Guil, N., Pérez de la Blanca, N. (2017). Automatic Learning of Gait Signatures for People Identification. Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science, 10306. Springer, Cham, Switzerland. doi:10.1007/978-3-319-59147-6_23.
Wolf, T., Babaee, M., & Rigoll, G. (2016). Multi-view gait recognition using 3D convolutional neural networks. 2016 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip.2016.7533144.
Thapar, D., Nigam, A., Aggarwal, D., & Agarwal, P. (2018). VGR-net: A view invariant gait recognition network. 2018 IEEE 4th International Conference on Identity, Security, and Behavior Analysis (ISBA). doi:10.1109/ISBA.2018.8311475.
Wu, Z., Huang, Y., Wang, L., Wang, X., & Tan, T. (2017). A Comprehensive Study on Cross-View Gait Based Human Identification with Deep CNNs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(2), 209–226. doi:10.1109/TPAMI.2016.2545669.
Shiraga, K., Makihara, Y., Muramatsu, D., Echigo, T., & Yagi, Y. (2016). GEINet: View-invariant gait recognition using a convolutional neural network. 2016 International Conference on Biometrics (ICB). doi:10.1109/ICB.2016.7550060.
Tong, S., Fu, Y., & Ling, H. (2017). Verification-based pairwise gait identification. 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). doi:10.1109/ICMEW.2017.8026299.
Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., & Yagi, Y. (2019). On Input/Output Architectures for Convolutional Neural Network-Based Cross-View Gait Recognition. IEEE Transactions on Circuits and Systems for Video Technology, 29(2), 2708–2719. doi:10.1109/TCSVT.2017.2760835.
Tong, S. bing, Fu, Y. zhuo, & Ling, H. fei. (2019). Cross-view gait recognition based on a restrictive triplet network. Pattern Recognition Letters, 125, 212–219. doi:10.1016/j.patrec.2019.04.010.
Min, P. P., Sayeed, S., & Ong, T. S. (2019). Gait recognition using deep convolutional features. 2019 7th International Conference on Information and Communication Technology (ICoICT). doi:10.1109/ICoICT.2019.8835194.
Sarkar, S., Phillips, P. J., Liu, Z., Vega, I. R., Grother, P., & Bowyer, K. W. (2005). The humanID gait challenge problem: data sets, performance, and analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(2), 162–177. doi:10.1109/tpami.2005.39.
Han, J., & Bhanu, B. (2006). Individual recognition using gait energy image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(2), 316–322. doi:10.1109/TPAMI.2006.38.
Lam, T. H. W., Cheung, K. H., & Liu, J. N. K. (2011). Gait flow image: A silhouette-based gait representation for human identification. Pattern Recognition, 44(4), 973–987. doi:10.1016/j.patcog.2010.10.011.
Bashir, K., Tao Xiang, & Shaogang Gong. (2009). Gait recognition using gait entropy image. 3rd International Conference on Imaging for Crime Detection and Prevention (ICDP 2009). doi:10.1049/ic.2009.0230.
Lishani, A. O., Boubchir, L., Khalifa, E., & Bouridane, A. (2016). Gabor filter bank-based GEI features for human Gait recognition. 39th International Conference on Telecommunications and Signal Processing (TSP). doi:10.1109/TSP.2016.7760962.
Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional networks for action recognition in videos. Advances in neural information processing systems, 27.
Hou, S., Cao, C., Liu, X., Huang, Y. (2020). Gait Lateral Network: Learning Discriminative and Compact Representations for Gait Recognition. Computer Vision – ECCV 2020, Lecture Notes in Computer Science, 12354. Springer, Cham, Switzerland. doi:10.1007/978-3-030-58545-7_22.
Huang, Z., Xue, D., Shen, X., Tian, X., Li, H., Huang, J., & Hua, X. S. (2021). 3D Local Convolutional Neural Networks for Gait Recognition. 2021 IEEE/CVF International Conference on Computer Vision (ICCV). doi:10.1109/ICCV48922.2021.01465.
Iwama, H., Okumura, M., Makihara, Y., & Yagi, Y. (2012). The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Transactions on Information Forensics and Security, 7(5), 1511–1521. doi:10.1109/TIFS.2012.2204253.
Masood, H., & Farooq, H. (2021). An Appearance Invariant Gait Recognition Technique Using Dynamic Gait Features. International Journal of Optics, 2021, 1-15. doi:10.1155/2021/5591728.
Bromley, J., bentz, J. W., bottou, L., guyon, I., lecun, Y., moore, C., … shah, R. (1993). Signature verification using a “siamese” time delay neural network. International Journal of Pattern Recognition and Artificial Intelligence, 07(04), 669–688. doi:10.1142/s0218001493000339.
Chopra, S., Hadsell, R., & LeCun, Y. (2005). Learning a similarity metric discriminatively, with application to face verification. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). doi:10.1109/CVPR.2005.202.
Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., & Yagi, Y. (2018). Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Transactions on Computer Vision and Applications, 10(1), 1-14. doi:10.1186/s41074-018-0039-6.
DOI: 10.28991/ESJ-2022-06-05-012
Refbacks
Copyright (c) 2022 Md Shohel Shohel Sayeed