Deep Learning Based Gait Recognition Using Convolutional Neural Network in the COVID-19 Pandemic

Md Shohel Sayeed, Pa Pa Min, Md Ahsanul Bari

Abstract


Gait recognition is the behavioral biometric trait that tracks humans based on their walking motion. It has gained attention because of its non-invasive and unobtrusive behaviors and applicable to the different application area. In this paper, we target model-free gait recognition with the deep learning approach for the Muslim community in the COVID-19 pandemic. The different convolutional neural network architectures (CNN) are examined by using the spatio-temporal gait representation called Gait Energy Images (GEI). We explored both the identification and verification problems to determine the suitability of the proposed CNN frameworks. In gait recognition, the intraclass variation is larger than the inter-class variation because of the shooting view, the walking speed, the wearing condition, and so on. To tackle this challenge, the verification framework is more suitable for the 1:1 association of gait recognition. As for the verification problem, we implemented the Siamese network with the parallel CNN architecture. All the proposed methods are tested against the public gait datasets called OUISIR-LP and OUISIR-MVLP to determine the identification and verification performance in terms of recognition accuracy and error rate.

 

Doi: 10.28991/ESJ-2022-06-05-012

Full Text: PDF


Keywords


Deep Learning; Convolutional Neural Network; Gait Recognition; COVID-19 Pandemic.

References


Kumar, D. (2020). Corona Virus: A Review of COVID-19. Eurasian Journal of Medicine and Oncology, 4(1), 8–25. doi:10.14744/ejmo.2020.51418.

Singhal, T. (2020). A review of coronavirus disease-2019 (COVID-19). The Indian journal of paediatrics, 87(4), 281-286. doi:10.1007/s12098-020-03263-6

Murray, M. P., Drought, A. B., & Kory, R. C. (1964). Walking patterns of normal men. The Journal of Bone & Joint Surgery, 46(2), 335-360. doi:10.2106/00004623-196446020-00009.

Kandel, I., Castelli, M., & Manzoni, L. (2022). Brightness as an Augmentation Technique for Image Classification. Emerging Science Journal, 6(4), 881-892. doi:10.28991/ESJ-2022-06-04-015.

Cutting, J. E., & Kozlowski, L. T. (1977). Recognizing friends by their walk: Gait perception without familiarity cues. Bulletin of the Psychonomic Society, 9(5), 353–356. doi:10.3758/BF03337021.

Zhang, Z., Hu, M., Wang, Y. (2011). A Survey of Advances in Biometric Gait Recognition. Biometric Recognition. CCBR 2011. Lecture Notes in Computer Science, 7098. Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-25449-9_19.

Lv, Z., Xing, X., Wang, K., & Guan, D. (2015). Class energy image analysis for video sensor-based gait recognition: A review. Sensors (Switzerland), 15(1), 932–964. doi:10.3390/s150100932.

Deng, M., Wang, C., Cheng, F., & Zeng, W. (2017). Fusion of spatial-temporal and kinematic features for gait recognition with deterministic learning. Pattern Recognition, 67(C), 186–200. doi:10.1016/j.patcog.2017.02.014.

Zhang, X., Sun, S., Li, C., Zhao, X., Hu, Y. (2017). DeepGait: A Learning Deep Convolutional Representation for Gait Recognition. Biometric Recognition. CCBR 2017. Lecture Notes in Computer Science, 10568. Springer, Cham, Switzerland. doi:10.1007/978-3-319-69923-3_48.

Castro, F. M., Marin-Jimenez, M. J., Guil, N., Lopez-Tapia, S., & Perez De La Blanca, N. (2017). Evaluation of CNN Architectures for Gait Recognition Based on Optical Flow Maps. 2017 International Conference of the Biometrics Special Interest Group (BIOSIG). doi:10.23919/BIOSIG.2017.8053503.

Habib, S., Khan, I., Aladhadh, S., Islam, M., & Khan, S. (2022). External Features-Based Approach to Date Grading and Analysis with Image Processing. Emerging Science Journal, 6(4), 694-704. doi:10.28991/ESJ-2022-06-04-03.

Jeevan, M., Jain, N., Hanmandlu, M., & Chetty, G. (2013). Gait recognition based on gait pal and pal entropy image. 2013 IEEE International Conference on Image Processing. doi:10.1109/ICIP.2013.6738864.

Zhang, C., Liu, W., Ma, H., & Fu, H. (2016). Siamese neural network based gait recognition for human identification. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). doi:10.1109/ICASSP.2016.7472194.

Das, D., & Chakrabarty, A. (2016). Human gait recognition using deep neural networks. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies - ICTCS. doi:10.1145/2905055.2905192.

Feng, Y., Li, Y., & Luo, J. (2016). Learning effective Gait features using LSTM. 2016 23rd International Conference on Pattern Recognition (ICPR). doi:10.1109/ICPR.2016.7899654.

Castro, F.M., Marín-Jiménez, M.J., Guil, N., Pérez de la Blanca, N. (2017). Automatic Learning of Gait Signatures for People Identification. Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science, 10306. Springer, Cham, Switzerland. doi:10.1007/978-3-319-59147-6_23.

Wolf, T., Babaee, M., & Rigoll, G. (2016). Multi-view gait recognition using 3D convolutional neural networks. 2016 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip.2016.7533144.

Thapar, D., Nigam, A., Aggarwal, D., & Agarwal, P. (2018). VGR-net: A view invariant gait recognition network. 2018 IEEE 4th International Conference on Identity, Security, and Behavior Analysis (ISBA). doi:10.1109/ISBA.2018.8311475.

Wu, Z., Huang, Y., Wang, L., Wang, X., & Tan, T. (2017). A Comprehensive Study on Cross-View Gait Based Human Identification with Deep CNNs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(2), 209–226. doi:10.1109/TPAMI.2016.2545669.

Shiraga, K., Makihara, Y., Muramatsu, D., Echigo, T., & Yagi, Y. (2016). GEINet: View-invariant gait recognition using a convolutional neural network. 2016 International Conference on Biometrics (ICB). doi:10.1109/ICB.2016.7550060.

Tong, S., Fu, Y., & Ling, H. (2017). Verification-based pairwise gait identification. 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). doi:10.1109/ICMEW.2017.8026299.

Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., & Yagi, Y. (2019). On Input/Output Architectures for Convolutional Neural Network-Based Cross-View Gait Recognition. IEEE Transactions on Circuits and Systems for Video Technology, 29(2), 2708–2719. doi:10.1109/TCSVT.2017.2760835.

Tong, S. bing, Fu, Y. zhuo, & Ling, H. fei. (2019). Cross-view gait recognition based on a restrictive triplet network. Pattern Recognition Letters, 125, 212–219. doi:10.1016/j.patrec.2019.04.010.

Min, P. P., Sayeed, S., & Ong, T. S. (2019). Gait recognition using deep convolutional features. 2019 7th International Conference on Information and Communication Technology (ICoICT). doi:10.1109/ICoICT.2019.8835194.

Sarkar, S., Phillips, P. J., Liu, Z., Vega, I. R., Grother, P., & Bowyer, K. W. (2005). The humanID gait challenge problem: data sets, performance, and analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(2), 162–177. doi:10.1109/tpami.2005.39.

Han, J., & Bhanu, B. (2006). Individual recognition using gait energy image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(2), 316–322. doi:10.1109/TPAMI.2006.38.

Lam, T. H. W., Cheung, K. H., & Liu, J. N. K. (2011). Gait flow image: A silhouette-based gait representation for human identification. Pattern Recognition, 44(4), 973–987. doi:10.1016/j.patcog.2010.10.011.

Bashir, K., Tao Xiang, & Shaogang Gong. (2009). Gait recognition using gait entropy image. 3rd International Conference on Imaging for Crime Detection and Prevention (ICDP 2009). doi:10.1049/ic.2009.0230.

Lishani, A. O., Boubchir, L., Khalifa, E., & Bouridane, A. (2016). Gabor filter bank-based GEI features for human Gait recognition. 39th International Conference on Telecommunications and Signal Processing (TSP). doi:10.1109/TSP.2016.7760962.

Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional networks for action recognition in videos. Advances in neural information processing systems, 27.

Hou, S., Cao, C., Liu, X., Huang, Y. (2020). Gait Lateral Network: Learning Discriminative and Compact Representations for Gait Recognition. Computer Vision – ECCV 2020, Lecture Notes in Computer Science, 12354. Springer, Cham, Switzerland. doi:10.1007/978-3-030-58545-7_22.

Huang, Z., Xue, D., Shen, X., Tian, X., Li, H., Huang, J., & Hua, X. S. (2021). 3D Local Convolutional Neural Networks for Gait Recognition. 2021 IEEE/CVF International Conference on Computer Vision (ICCV). doi:10.1109/ICCV48922.2021.01465.

Iwama, H., Okumura, M., Makihara, Y., & Yagi, Y. (2012). The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Transactions on Information Forensics and Security, 7(5), 1511–1521. doi:10.1109/TIFS.2012.2204253.

Masood, H., & Farooq, H. (2021). An Appearance Invariant Gait Recognition Technique Using Dynamic Gait Features. International Journal of Optics, 2021, 1-15. doi:10.1155/2021/5591728.

Bromley, J., bentz, J. W., bottou, L., guyon, I., lecun, Y., moore, C., … shah, R. (1993). Signature verification using a “siamese” time delay neural network. International Journal of Pattern Recognition and Artificial Intelligence, 07(04), 669–688. doi:10.1142/s0218001493000339.

Chopra, S., Hadsell, R., & LeCun, Y. (2005). Learning a similarity metric discriminatively, with application to face verification. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). doi:10.1109/CVPR.2005.202.

Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., & Yagi, Y. (2018). Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Transactions on Computer Vision and Applications, 10(1), 1-14. doi:10.1186/s41074-018-0039-6.


Full Text: PDF

DOI: 10.28991/ESJ-2022-06-05-012

Refbacks



Copyright (c) 2022 Md Shohel Shohel Sayeed