Brightness as an Augmentation Technique for Image Classification

Image Classification Deep Learning Medical Images Augmentation Techniques Supervised Learning.

Authors

  • Ibrahem Kandel
    d20181143@novaims.unl.pt
    Nova Information Management School (NOVA IMS), Campus de Campolide, Universidade Nova de Lisboa, 1070-312 Lisboa,, Portugal https://orcid.org/0000-0002-6882-014X
  • Mauro Castelli Nova Information Management School (NOVA IMS), Campus de Campolide, Universidade Nova de Lisboa, 1070-312 Lisboa,, Portugal
  • Luca Manzoni Dipartimento di Matematica e Geoscienze, Universití  degli Studi di Trieste, Via Alfonso Valerio 12/1, 34127 Trieste,, Italy

Downloads

Augmentation techniques are crucial for accurately training convolution neural networks (CNNs). Therefore, these techniques have become the preprocessing methods. However, not every augmentation technique can be beneficial, especially those that change the image's underlying structure, such as color augmentation techniques. In this study, the effect of eight brightness scales was investigated in the task of classifying a large histopathology dataset. Four state-of-the-art CNNs were used to assess each scale's performance. The use of brightness was not beneficial in all the experiments. Among the different brightness scales, the [0.75–1.00] scale, which closely resembles the original brightness of the images, resulted in the best performance. The use of geometric augmentation yielded better performance than any brightness scale. Moreover, the results indicate that training the CNN without applying any augmentation techniques led to better results than considering brightness augmentation. Therefore, experimental results support the hypothesis that brightness augmentation techniques are not beneficial for image classification using deep-learning models and do not yield any performance gain. Furthermore, brightness augmentation techniques can significantly degrade the model's performance when they are applied with extreme values.

 

Doi: 10.28991/ESJ-2022-06-04-015

Full Text: PDF