Performance Improvement of Air-cooled Battery Thermal Management System using Sink of Different Pin-Fin Shapes

O. Miracle Oyewola, A. Andrew Awonusi, O. Saheed Ismail

Abstract


One of the most important influences on battery safety, capacity, and cell ageing is heat generation and temperature inhomogeneity, which cause unbalanced ageing, resulting in cell performance decline. A well-developed temperature management module is required to avoid such undesirable actions. In this study, an air-cooled temperature management module was developed by coupling a unique heat sink of different pin-fin geometries/shapes to prismatic Li-ion cells and a 3D transient analysis was conducted to simulate the cooling performance of this heat sink under the effect of inlet airflow velocities and temperatures at a discharge rate of 2C for three cases. The results in the form of maximum temperature and temperature homogeneity inside the battery were derived and compared to the commonly used circular pin-fin heat sink. The overall result indicates that case 2, which consists of uniform height, shows better promise than others, taking into consideration the geometry employed. After 600 s and at a constant inlet air velocity of 0.412 m/s across a range of 20 oC to 35 oC, it was found that this heat sink performed better, providing an average of 1.87% and 1.93% improvement in temperature homogeneity and battery maximum temperature, respectively. Also, at a constant inlet air temperature of 27 oC across the range of inlet air velocity of 0.206 m/s to 0.824 m/s, this heat sink provides an average of 1.77% and 0.27% improvement in temperature homogeneity and battery maximum temperature, respectively.

 

Doi: 10.28991/ESJ-2022-06-04-013

Full Text: PDF


Keywords


Battery Thermal Management System; Lithium-ion Battery; Heat Sink; Air Cooling. Varied Pin-Fin Geometry; Electric Vehicles; Hybrid Electric Vehicles.

References


Mohammadian, S. K., & Zhang, Y. (2015). Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles. Journal of Power Sources, 273, 431–439. doi:10.1016/j.jpowsour.2014.09.110.

Behi, H., Behi, M., Karimi, D., Jaguemont, J., Ghanbarpour, M., Behnia, M., Berecibar, M., & Van Mierlo, J. (2021). Heat pipe air-cooled thermal management system for lithium-ion batteries: High power applications. Applied Thermal Engineering, 183. doi:10.1016/j.applthermaleng.2020.116240.

Sun, J., Li, J., Zhou, T., Yang, K., Wei, S., Tang, N., Dang, N., Li, H., Qiu, X., & Chen, L. (2016). Toxicity, a serious concern of thermal runaway from commercial Li-ion battery. Nano Energy, 27, 313–319. doi:10.1016/j.nanoen.2016.06.031.

Wang, Q., Jiang, B., Li, B., & Yan, Y. (2016). A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renewable and Sustainable Energy Reviews, 64, 106–128. doi:10.1016/j.rser.2016.05.033.

Miranda, Á. G., & Hong, C. W. (2013). Integrated modeling for the cyclic behavior of high power Li-ion batteries under extended operating conditions. Applied Energy, 111, 681–689. doi:10.1016/j.apenergy.2013.05.047.

Ye, Y., Shi, Y., & Tay, A. A. O. (2012). Electro-thermal cycle life model for lithium iron phosphate battery. Journal of Power Sources, 217, 509–518. doi:10.1016/j.jpowsour.2012.06.055.

Kizilel, R., Sabbah, R., Selman, J. R., & Al-Hallaj, S. (2009). An alternative cooling system to enhance the safety of Li-ion battery packs. Journal of Power Sources, 194(2), 1105–1112. doi:10.1016/j.jpowsour.2009.06.074.

Saw, L. H., Ye, Y., Yew, M. C., Chong, W. T., Yew, M. K., & Ng, T. C. (2017). Computational fluid dynamics simulation on open cell aluminium foams for Li-ion battery cooling system. Applied Energy, 204, 1489–1499. doi:10.1016/j.apenergy.2017.04.022.

Mohammadian, S. K., & Zhang, Y. (2017). Cumulative effects of using pin fin heat sink and porous metal foam on thermal management of lithium-ion batteries. Applied Thermal Engineering, 118, 375–384. doi:10.1016/j.applthermaleng.2017.02.121.

Peng, X., Cui, X., Liao, X., & Garg, A. (2020). A thermal investigation and optimization of an air-cooled lithium-ion battery pack. Energies, 13(11), 2956. doi:10.3390/en13112956.

Chen, K., Chen, Y., She, Y., Song, M., Wang, S., & Chen, L. (2020). Construction of effective symmetrical air-cooled system for battery thermal management. Applied Thermal Engineering, 166, 114679. doi:10.1016/j.applthermaleng.2019.114679.

Fan, L., Khodadadi, J. M., & Pesaran, A. A. (2013). A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles. Journal of Power Sources, 238, 301–312. doi:10.1016/j.jpowsour.2013.03.050.

Liu, Z., Wang, Y., Zhang, J., & Liu, Z. (2014). Shortcut computation for the thermal management of a large air-cooled battery pack. Applied Thermal Engineering, 66(1–2), 445–452. doi:10.1016/j.applthermaleng.2014.02.040.

Chen, K., Wu, W., Yuan, F., Chen, L., & Wang, S. (2019). Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern. Energy, 167, 781–790. doi:10.1016/j.energy.2018.11.011.

Wang, M., Hung, T. C., & Xi, H. (2021). Numerical study on performance enhancement of the air-cooled battery thermal management system by adding parallel plates. Energies, 14(11), 3096. doi:10.3390/en14113096.

Wang, M., Teng, S., Xi, H., & Li, Y. (2021). Cooling performance optimization of air-cooled battery thermal management system. Applied Thermal Engineering, 195, 117242. doi:10.1016/j.applthermaleng.2021.117242.

Liu, Y., & Zhang, J. (2019). Design a J-type air-based battery thermal management system through surrogate-based optimization. Applied Energy, 252, 113426. doi:10.1016/j.apenergy.2019.113426.

Li, X., He, F., & Ma, L. (2013). Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation. Journal of Power Sources, 238, 395–402. doi:10.1016/j.jpowsour.2013.04.073.

Mahamud, R., & Park, C. (2011). Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. Journal of Power Sources, 196(13), 5685–5696. doi:10.1016/j.jpowsour.2011.02.076.

Giuliano, M. R., Prasad, A. K., & Advani, S. G. (2012). Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries. Journal of Power Sources, 216, 345–352. doi:10.1016/j.jpowsour.2012.05.074.

Park, H. (2013). A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. Journal of Power Sources, 239, 30–36. doi:10.1016/j.jpowsour.2013.03.102.

Qian, Z., Li, Y., & Rao, Z. (2016). Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Conversion and Management, 126, 622–631. doi:10.1016/j.enconman.2016.08.063.

Basu, S., Hariharan, K. S., Kolake, S. M., Song, T., Sohn, D. K., & Yeo, T. (2016). Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system. Applied Energy, 181, 1–13. doi:10.1016/j.apenergy.2016.08.049.

Wu, F., & Rao, Z. (2017). The lattice Boltzmann investigation of natural convection for nanofluid based battery thermal management. Applied Thermal Engineering, 115, 659–669. doi:10.1016/j.applthermaleng.2016.12.139.

Patil, M. S., Seo, J. H., Panchal, S., Jee, S. W., & Lee, M. Y. (2020). Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate. International Journal of Heat and Mass Transfer, 155, 119728. doi:10.1016/j.ijheatmasstransfer.2020.119728.

Ling, Z., Chen, J., Fang, X., Zhang, Z., Xu, T., Gao, X., & Wang, S. (2014). Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system. Applied Energy, 121, 104–113. doi:10.1016/j.apenergy.2014.01.075.

Javani, N., Dincer, I., Naterer, G. F., & Rohrauer, G. L. (2014). Modeling of passive thermal management for electric vehicle battery packs with PCM between cells. Applied Thermal Engineering, 73(1), 307–316. doi:10.1016/j.applthermaleng.2014.07.037.

Javani, N., Dincer, I., Naterer, G. F., & Yilbas, B. S. (2014). Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles. International Journal of Heat and Mass Transfer, 72, 690–703. doi:10.1016/j.ijheatmasstransfer.2013.12.076.

Behi, H., Karimi, D., Behi, M., Ghanbarpour, M., Jaguemont, J., Sokkeh, M. A., Gandoman, F. H., Berecibar, M., & Van Mierlo, J. (2020). A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Applied Thermal Engineering, 174, 115280. doi:10.1016/j.applthermaleng.2020.115280.

Dan, D., Yao, C., Zhang, Y., Zhang, H., Zeng, Z., & Xu, X. (2019). Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model. Applied Thermal Engineering, 162, 114183. doi:10.1016/j.applthermaleng.2019.114183.

Ye, X., Zhao, Y., & Quan, Z. (2018). Experimental study on heat dissipation for lithium-ion battery based on micro heat pipe array (MHPA). Applied Thermal Engineering, 130, 74–82. doi:10.1016/j.applthermaleng.2017.10.141.

Ye, Y., Saw, L. H., Shi, Y., & Tay, A. A. O. (2015). Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Applied Thermal Engineering, 86, 281–291. doi:10.1016/j.applthermaleng.2015.04.066.

Tran, T. H., Harmand, S., Desmet, B., & Filangi, S. (2014). Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery. Applied Thermal Engineering, 63(2), 551–558. doi:10.1016/j.applthermaleng.2013.11.048.

Zhang, F., Lin, A., Wang, P., & Liu, P. (2021). Optimization design of a parallel air-cooled battery thermal management system with spoilers. Applied Thermal Engineering, 182, 116062. doi:10.1016/j.applthermaleng.2020.116062.

Wang, N., Li, C., Li, W., Huang, M., & Qi, D. (2021). Effect analysis on performance enhancement of a novel air cooling battery thermal management system with spoilers. Applied Thermal Engineering, 192, 116932. doi:10.1016/j.applthermaleng.2021.116932.

Gu, W. B., & Wang, C. Y. (2000). Thermal-Electrochemical Modeling of Battery Systems. Journal of the Electrochemical Society, 147(8), 2910. doi:10.1149/1.1393625.

Karimi, G., & Li, X. (2013). Thermal management of lithium-ion batteries for electric vehicles. International Journal of Energy Research, 37(1), 13–24. doi:10.1002/er.1956.

Fathabadi, H. (2014). A novel design including cooling media for Lithium-ion batteries pack used in hybrid and electric vehicles. Journal of Power Sources, 245, 495–500. doi:10.1016/j.jpowsour.2013.06.160.

ANSYS. (2010). Introduction to ANSYS Fluent. ANSYS Customer Training Material, 1–59. Available online: https://imechanica.org/files/fluent_13.0_lecture10-transient.pdf (accessed on January 2022).


Full Text: PDF

DOI: 10.28991/ESJ-2022-06-04-013

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 OLANREWAJU Miracle OYEWOLA, TOKUNBO AWONUSI, OLAWALE SAHEED ISMAIL