Development of Computer Vision Algorithms for Multi-class Waste Segregation and Their Analysis

Neeraja Narayanswamy, A. R. Abdul Rajak, Shazia Hasan


Classification of waste for recycling has been a focal point for scientists interested in the field of conservation of the environment. Recycling consists of numerous steps, of which one of the most crucial is the segregation of recyclables from all other waste. Due to a lack of safety standards in developing countries, waste collection is often done manually by domestic helpers, or "rag-pickers". Such a process risks individual and public health. The waste collection methods may ultimately cause waste to become non-recyclable due to cross-contamination. Literature shows that research in this direction focuses on a single class of waste detection. The proposed work investigates CNN, YOLO, and faster RCNN-based multi-class classification methods to detect different types of waste at the collecting point. The smart dustbin proposed employs these computer vision methods with a Raspberry Pi microcontroller and camera module. The experimental results for multi-class classification show that the CNN has 80% of accuracy with 60% of the loss. Whereas the YOLO algorithm shows an accuracy of 88% and a loss of 40%. But the best results were obtained from faster RCNN object detection with API, with an accuracy of 91% and a loss of 16%. There is already an existing method for making a smart dustbin, so the results are compared to show how computer vision can be used to make a smart dustbin. This shows how computer vision can be used to make a smart dustbin.


Doi: 10.28991/ESJ-2022-06-03-015

Full Text: PDF


Computer Vision; Object Detection; Classification; Recycling; Waste Disposal.


Wilson, D. C., Rodic, L., Modak, P., Soos, R., Carpintero, A., Velis, K., Iyer, M. & Simonett, O. (2015). Global waste management outlook. United Nations Environment Programme (UNEP), Nairobi, Kenya.

Istrate, I.-R., Iribarren, D., Gálvez-Martos, J.-L., & Dufour, J. (2020). Review of life-cycle environmental consequences of waste-to-energy solutions on the municipal solid waste management system. Resources, Conservation and Recycling, 157, 104778. doi:10.1016/j.resconrec.2020.104778.

Anjali Lukose. (2015). Dirty Mumbai: 6,400 tonnes of solid waste, 40 pc sewage go untreated, The Indian Express, Mumbai. Available online: (accessed on January 2022).

Balamurugan, S., Ajithx, A., Ratnakaran, S., Balaji, S., & Marimuthu, R. (2017). Design of smart waste management system. 2017 International Conference on Microelectronic Devices, Circuits and Systems, ICMDCS 2017, Vellore, India, 1–4. doi:10.1109/ICMDCS.2017.8211709.

Jain, R., Garg, S., Agrawal, T., Gangal, S., Chawla, I., & Jain, S. (2018). Sustainable Waste Management Model. 2018 11th International Conference on Contemporary Computing, IC3 2018, Noida, India, 1–6. doi:10.1109/IC3.2018.8530544.

Sreejith, S., Ramya, R., Roja, R., & Sanjay Kumar, A. (2019). Smart Bin for Waste Management System. 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019, Coimbatore, India, 1079–1082. doi:10.1109/ICACCS.2019.8728531.

Saha, H. N., Auddy, S., Pal, S., Kumar, S., Pandey, S., Singh, R., Singh, A. K., Banerjee, S., Ghosh, D., & Saha, S. (2017). Waste management using Internet of Things (IoT). 2017 8th Industrial Automation and Electromechanical Engineering Conference, IEMECON 2017, Bangkok, Thailand, 359–363. doi:10.1109/IEMECON.2017.8079623.

Adam, M., Okasha, M. E., Tawfeeq, O. M., Margan, M. A., & Nasreldeen, B. (2018). Waste Management System Using IoT. 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering, ICCCEEE 2018, Khartoum, Sudan, 1–4. doi:10.1109/ICCCEEE.2018.8515871.

Campos-Alba, C. M., Garrido-Rodríguez, J. C., Plata-Díaz, A. M., & Pérez-López, G. (2021). The selective collection of municipal solid waste and other factors determining cost efficiency. An analysis of service provision by Spanish municipalities. Waste Management, 134, 11–20. doi:10.1016/j.wasman.2021.07.039.

White, J. K., & Beaven, R. P. (2013). Developments to a landfill processes model following its application to two landfill modelling challenges. Waste Management, 33(10), 1969–1981. doi:10.1016/j.wasman.2012.12.006.

Di Foggia, G., & Beccarello, M. (2020). Drivers of municipal solid waste management cost based on cost models inherent to sorted and unsorted waste. Waste Management, 114, 202–214. doi:10.1016/j.wasman.2020.07.012.

Ferronato, N., Preziosi, G., Gorritty Portillo, M. A., Guisbert Lizarazu, E. G., & Torretta, V. (2020). Assessment of municipal solid waste selective collection scenarios with geographic information systems in Bolivia. Waste Management, 102, 919–931. doi:10.1016/j.wasman.2019.12.010.

Viau, S., Majeau-Bettez, G., Spreutels, L., Legros, R., Margni, M., & Samson, R. (2020). Substitution modelling in life cycle assessment of municipal solid waste management. Waste Management, 102, 795–803. doi:10.1016/j.wasman.2019.11.042.

Delgado-Antequera, L., Gémar, G., Molinos-Senante, M., Gómez, T., Caballero, R., & Sala-Garrido, R. (2021). Eco-efficiency assessment of municipal solid waste services: Influence of exogenous variables. Waste Management, 130, 136–146. doi:10.1016/j.wasman.2021.05.022.

Riedewald, F., Patel, Y., Wilson, E., Santos, S., & Sousa-Gallagher, M. (2021). Economic assessment of a 40,000 t/y mixed plastic waste pyrolysis plant using direct heat treatment with molten metal: A case study of a plant located in Belgium. Waste Management, 120, 698–707. doi:10.1016/j.wasman.2020.10.039.

Kumar, A., Samadder, S. R., Kumar, N., & Singh, C. (2018). Estimation of the generation rate of different types of plastic wastes and possible revenue recovery from informal recycling. Waste Management, 79, 781–790. doi:10.1016/j.wasman.2018.08.045.

Xu, A., Chang, H., Xu, Y., Li, R., Li, X., & Zhao, Y. (2021). Applying artificial neural networks (ANNs) to solve solid waste-related issues: A critical review. Waste Management, 124, 385–402. doi:10.1016/j.wasman.2021.02.029.

Jain, P., Kim, H., & Townsend, T. G. (2005). Heavy metal content in soil reclaimed from a municipal solid waste landfill. Waste Management, 25(1), 25-35. doi:10.1016/j.wasman.2004.08.009.

Funch, O. I., Marhaug, R., Kohtala, S., & Steinert, M. (2021). Detecting glass and metal in consumer trash bags during waste collection using convolutional neural networks. Waste Management, 119, 30–38. doi:10.1016/j.wasman.2020.09.032.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single shot multibox detector. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9905 LNCS, Amsterdam, Netherland, 21–37. doi:10.1007/978-3-319-46448-0_2.

Valueva, M. V., Nagornov, N. N., Lyakhov, P. A., Valuev, G. V., & Chervyakov, N. I. (2020). Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Mathematics and Computers in Simulation, 177, 232–243. doi:10.1016/j.matcom.2020.04.031.

Fukushima, K. (2007). Noncognition. Scholarpedia, 2(1), 1717, Kansai University, Osaka, Japan. doi:10 4249 1717.

Prabhu, R. (2018). Understanding of Convolutional Neural Network (CNN) Deep Learning. Medium.Com, 1–11. Available online: (accessed on January 2022).

Mattsson, N. (2016). Classification Performance of Convolutional Neural Networks. Uppsala University Publications, Sweden. Available online: (accessed on January 2022).

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, United States, 779–788. doi:10.1109/CVPR.2016.91.

Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster, stronger. In F. Better & Stronger (Eds.), Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, United States, (pp. 6517–6525). doi:10.1109/CVPR.2017.690.

Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149. doi:10.1109/TPAMI.2016.2577031.

Huang, H., Liu, Z., Chen, T., Hu, X., Zhang, Q., & Xiong, X. (2020). Design space exploration for yolo neural network accelerator. Electronics, 9(11), 1–15. doi:10.3390/electronics9111921.

Huang, R., Pedoeem, J., & Chen, C. (2019). YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers. Proceedings - 2018 IEEE International Conference on Big Data, Big Data, Seattle, United States, 2503–2510. doi:10.1109/BigData.2018.8621865.

Xiao, Y., Wang, X., Zhang, P., Meng, F., & Shao, F. (2020). Object detection based on faster r-cnn algorithm with skip pooling and fusion of contextual information. Sensors, 20(19), 1–20. doi:10.3390/s20195490.

Benjdira, B., Khursheed, T., Koubaa, A., Ammar, A., & Ouni, K. (2019). Car Detection using Unmanned Aerial Vehicles: Comparison between Faster R-CNN and YOLOv3. 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS). doi:10.1109/uvs.2019.8658300

Xu, X., Zhang, X., Yu, B., Hu, X. S., Rowen, C., Hu, J., & Shi, Y. (2019). Dac-sdc low power object detection challenge for uav applications. IEEE transactions on pattern analysis and machine intelligence, 43(2), 392-403. doi:10.1109/TPAMI.2019.2932429.

Abdul Rajak, A. R., Hasan, S., & Mahmood, B. (2019). Automatic waste detection by deep learning and disposal system design. Journal of Environmental Engineering and Science, 15(1), 38–44. doi:10.1680/jenes.19.00023.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-03-015


  • There are currently no refbacks.

Copyright (c) 2022 Abdul Rajak