Development of Computer Vision Algorithms for Multi-class Waste Segregation and Their Analysis
Abstract
Doi: 10.28991/ESJ-2022-06-03-015
Full Text: PDF
Keywords
References
Wilson, D. C., Rodic, L., Modak, P., Soos, R., Carpintero, A., Velis, K., Iyer, M. & Simonett, O. (2015). Global waste management outlook. United Nations Environment Programme (UNEP), Nairobi, Kenya.
Istrate, I.-R., Iribarren, D., Gálvez-Martos, J.-L., & Dufour, J. (2020). Review of life-cycle environmental consequences of waste-to-energy solutions on the municipal solid waste management system. Resources, Conservation and Recycling, 157, 104778. doi:10.1016/j.resconrec.2020.104778.
Anjali Lukose. (2015). Dirty Mumbai: 6,400 tonnes of solid waste, 40 pc sewage go untreated, The Indian Express, Mumbai. Available online: http://indianexpress.com/article/cities/mumbai/dirty-mumbai-6400-tonnes-of-solid-waste-40-pc-sewage-go-untreated/ (accessed on January 2022).
Balamurugan, S., Ajithx, A., Ratnakaran, S., Balaji, S., & Marimuthu, R. (2017). Design of smart waste management system. 2017 International Conference on Microelectronic Devices, Circuits and Systems, ICMDCS 2017, Vellore, India, 1–4. doi:10.1109/ICMDCS.2017.8211709.
Jain, R., Garg, S., Agrawal, T., Gangal, S., Chawla, I., & Jain, S. (2018). Sustainable Waste Management Model. 2018 11th International Conference on Contemporary Computing, IC3 2018, Noida, India, 1–6. doi:10.1109/IC3.2018.8530544.
Sreejith, S., Ramya, R., Roja, R., & Sanjay Kumar, A. (2019). Smart Bin for Waste Management System. 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019, Coimbatore, India, 1079–1082. doi:10.1109/ICACCS.2019.8728531.
Saha, H. N., Auddy, S., Pal, S., Kumar, S., Pandey, S., Singh, R., Singh, A. K., Banerjee, S., Ghosh, D., & Saha, S. (2017). Waste management using Internet of Things (IoT). 2017 8th Industrial Automation and Electromechanical Engineering Conference, IEMECON 2017, Bangkok, Thailand, 359–363. doi:10.1109/IEMECON.2017.8079623.
Adam, M., Okasha, M. E., Tawfeeq, O. M., Margan, M. A., & Nasreldeen, B. (2018). Waste Management System Using IoT. 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering, ICCCEEE 2018, Khartoum, Sudan, 1–4. doi:10.1109/ICCCEEE.2018.8515871.
Campos-Alba, C. M., Garrido-Rodríguez, J. C., Plata-Díaz, A. M., & Pérez-López, G. (2021). The selective collection of municipal solid waste and other factors determining cost efficiency. An analysis of service provision by Spanish municipalities. Waste Management, 134, 11–20. doi:10.1016/j.wasman.2021.07.039.
White, J. K., & Beaven, R. P. (2013). Developments to a landfill processes model following its application to two landfill modelling challenges. Waste Management, 33(10), 1969–1981. doi:10.1016/j.wasman.2012.12.006.
Di Foggia, G., & Beccarello, M. (2020). Drivers of municipal solid waste management cost based on cost models inherent to sorted and unsorted waste. Waste Management, 114, 202–214. doi:10.1016/j.wasman.2020.07.012.
Ferronato, N., Preziosi, G., Gorritty Portillo, M. A., Guisbert Lizarazu, E. G., & Torretta, V. (2020). Assessment of municipal solid waste selective collection scenarios with geographic information systems in Bolivia. Waste Management, 102, 919–931. doi:10.1016/j.wasman.2019.12.010.
Viau, S., Majeau-Bettez, G., Spreutels, L., Legros, R., Margni, M., & Samson, R. (2020). Substitution modelling in life cycle assessment of municipal solid waste management. Waste Management, 102, 795–803. doi:10.1016/j.wasman.2019.11.042.
Delgado-Antequera, L., Gémar, G., Molinos-Senante, M., Gómez, T., Caballero, R., & Sala-Garrido, R. (2021). Eco-efficiency assessment of municipal solid waste services: Influence of exogenous variables. Waste Management, 130, 136–146. doi:10.1016/j.wasman.2021.05.022.
Riedewald, F., Patel, Y., Wilson, E., Santos, S., & Sousa-Gallagher, M. (2021). Economic assessment of a 40,000 t/y mixed plastic waste pyrolysis plant using direct heat treatment with molten metal: A case study of a plant located in Belgium. Waste Management, 120, 698–707. doi:10.1016/j.wasman.2020.10.039.
Kumar, A., Samadder, S. R., Kumar, N., & Singh, C. (2018). Estimation of the generation rate of different types of plastic wastes and possible revenue recovery from informal recycling. Waste Management, 79, 781–790. doi:10.1016/j.wasman.2018.08.045.
Xu, A., Chang, H., Xu, Y., Li, R., Li, X., & Zhao, Y. (2021). Applying artificial neural networks (ANNs) to solve solid waste-related issues: A critical review. Waste Management, 124, 385–402. doi:10.1016/j.wasman.2021.02.029.
Jain, P., Kim, H., & Townsend, T. G. (2005). Heavy metal content in soil reclaimed from a municipal solid waste landfill. Waste Management, 25(1), 25-35. doi:10.1016/j.wasman.2004.08.009.
Funch, O. I., Marhaug, R., Kohtala, S., & Steinert, M. (2021). Detecting glass and metal in consumer trash bags during waste collection using convolutional neural networks. Waste Management, 119, 30–38. doi:10.1016/j.wasman.2020.09.032.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single shot multibox detector. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9905 LNCS, Amsterdam, Netherland, 21–37. doi:10.1007/978-3-319-46448-0_2.
Valueva, M. V., Nagornov, N. N., Lyakhov, P. A., Valuev, G. V., & Chervyakov, N. I. (2020). Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Mathematics and Computers in Simulation, 177, 232–243. doi:10.1016/j.matcom.2020.04.031.
Fukushima, K. (2007). Noncognition. Scholarpedia, 2(1), 1717, Kansai University, Osaka, Japan. doi:10 4249 1717.
Prabhu, R. (2018). Understanding of Convolutional Neural Network (CNN) Deep Learning. Medium.Com, 1–11. Available online: https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148 (accessed on January 2022).
Mattsson, N. (2016). Classification Performance of Convolutional Neural Networks. Uppsala University Publications, Sweden. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-305342 (accessed on January 2022).
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, United States, 779–788. doi:10.1109/CVPR.2016.91.
Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster, stronger. In F. Better & Stronger (Eds.), Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, United States, (pp. 6517–6525). doi:10.1109/CVPR.2017.690.
Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149. doi:10.1109/TPAMI.2016.2577031.
Huang, H., Liu, Z., Chen, T., Hu, X., Zhang, Q., & Xiong, X. (2020). Design space exploration for yolo neural network accelerator. Electronics, 9(11), 1–15. doi:10.3390/electronics9111921.
Huang, R., Pedoeem, J., & Chen, C. (2019). YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers. Proceedings - 2018 IEEE International Conference on Big Data, Big Data, Seattle, United States, 2503–2510. doi:10.1109/BigData.2018.8621865.
Xiao, Y., Wang, X., Zhang, P., Meng, F., & Shao, F. (2020). Object detection based on faster r-cnn algorithm with skip pooling and fusion of contextual information. Sensors, 20(19), 1–20. doi:10.3390/s20195490.
Benjdira, B., Khursheed, T., Koubaa, A., Ammar, A., & Ouni, K. (2019). Car Detection using Unmanned Aerial Vehicles: Comparison between Faster R-CNN and YOLOv3. 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS). doi:10.1109/uvs.2019.8658300
Xu, X., Zhang, X., Yu, B., Hu, X. S., Rowen, C., Hu, J., & Shi, Y. (2019). Dac-sdc low power object detection challenge for uav applications. IEEE transactions on pattern analysis and machine intelligence, 43(2), 392-403. doi:10.1109/TPAMI.2019.2932429.
Abdul Rajak, A. R., Hasan, S., & Mahmood, B. (2019). Automatic waste detection by deep learning and disposal system design. Journal of Environmental Engineering and Science, 15(1), 38–44. doi:10.1680/jenes.19.00023.
DOI: 10.28991/ESJ-2022-06-03-015