Oversampling Approach Using Radius-SMOTE for Imbalance Electroencephalography Datasets
Abstract
Doi: 10.28991/ESJ-2022-06-02-013
Full Text: PDF
Keywords
References
Subramanian, R., Wache, J., Abadi, M. K., Vieriu, R. L., Winkler, S., & Sebe, N. (2018). Ascertain: Emotion and personality recognition using commercial sensors. IEEE Transactions on Affective Computing, 9(2), 147–160. doi:10.1109/TAFFC.2016.2625250.
Setyohadi, D. B., Sri Kusrohmaniah, Christian, E., Dewi, L. T., & Sukci, B. P. (2017). M-Learning interface design based on emotional aspect analysis. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10127 LNCS, 276–287. doi:10.1007/978-3-319-52503-7_22.
Daher, W., Baya’a, N., & Anabousy, A. (2021). Emotions and self-efficacy as mediators of pre-service teachers’ adoption of digital tools. Emerging Science Journal, 5(5), 636–649. doi:10.28991/esj-2021-01301.
Seyeditabari, A., Tabari, N., & Zadrozny, W. (2018). Emotion Detection in Text: a Review. http://arxiv.org/abs/1806.00674
Alswaidan, N., & Menai, M. E. B. (2020). Hybrid Feature Model for Emotion Recognition in Arabic Text. IEEE Access, 8, 37843–37854. doi:10.1109/ACCESS.2020.2975906.
Gunadi, I. G. A., Harjoko, A., Wardoyo, R., & Ramdhani, N. (2015). The extraction and the recognition of facial feature state to emotion recognition based on certainty factor. Journal of Theoretical and Applied Information Technology, 82(1), 113–121.
Ko, B. C. (2018). A brief review of facial emotion recognition based on visual information. Sensors (Switzerland), 18(2). doi:10.3390/s18020401.
Lamba, P. S., & Virmani, D. (2018). Information retrieval from emotions and eye blinks with help of sensor nodes. International Journal of Electrical and Computer Engineering, 8(4), 2433–2441. doi:10.11591/ijece.v8i4.pp2433-2441.
Mehta, D., Siddiqui, M. F. H., & Javaid, A. Y. (2018). Facial emotion recognition: A survey and real-world user experiences in mixed reality. Sensors (Switzerland), 18(2), 1–24. doi:10.3390/s18020416.
Salmam, F. Z., Madani, A., & Kissi, M. (2018). Emotion recognition from facial expression based on fiducial points detection and using neural network. International Journal of Electrical and Computer Engineering, 8(1), 52–59. doi:10.11591/ijece.v8i1.pp52-59.
Noroozi, F., Corneanu, C. A., Kamińska, D., Sapiński, T., Escalera, S., & Anbarjafari, G. (2018). Survey on emotional body gesture recognition. IEEE transactions on affective computing, 12(2), 505-523. doi.org/10.1109/TAFFC.2018.2874986.
Khalil, R. A., Jones, E., Babar, M. I., Jan, T., Zafar, M. H., & Alhussain, T. (2019). Speech Emotion Recognition Using Deep Learning Techniques: A Review. IEEE Access, 7, 117327–117345. doi:10.1109/ACCESS.2019.2936124.
Ekman, P., Friesen, W. V., & Simons, R. C. (1985). Is the startle reaction an emotion?. Journal of personality and social psychology, 49(5), 1416. doi.org/10.1037/0022-3514.49.5.1416.
Shu, L., Xie, J., Yang, M., Li, Z., Li, Z., Liao, D., Xu, X., & Yang, X. (2018). A review of emotion recognition using physiological signals. Sensors (Switzerland), 18(7). doi:10.3390/s18072074.
Li, Y., Huang, J., Zhou, H., & Zhong, N. (2017). Human emotion recognition with electroencephalographic multidimensional features by hybrid deep neural networks. Applied Sciences (Switzerland), 7(10). doi:10.3390/app7101060.
Setyohadi, D. B., Kusrohmaniah, S., Gunawan, S. B., Pranowo, & Prabuwono, A. S. (2018). Galvanic skin response data classification for emotion detection. International Journal of Electrical and Computer Engineering, 8(5), 4004–4014. doi:10.11591/ijece.v8i5.pp4004-4014.
Hsu, Y. L., Wang, J. S., Chiang, W. C., & Hung, C. H. (2020). Automatic ECG-Based Emotion Recognition in Music Listening. IEEE Transactions on Affective Computing, 11(1), 85–99. doi:10.1109/TAFFC.2017.2781732.
Song, T., Zheng, W., Lu, C., Zong, Y., Zhang, X., & Cui, Z. (2019). MPED: A multi-modal physiological emotion database for discrete emotion recognition. IEEE Access, 7(c), 12177–12191. doi:10.1109/ACCESS.2019.2891579.
Miranda-Correa, J. A., Abadi, M. K., Sebe, N., & Patras, I. (2021). AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups. IEEE Transactions on Affective Computing, 12(2), 479–493. doi:10.1109/TAFFC.2018.2884461.
Koelstra, S., Mühl, C., Soleymani, M., Lee, J. S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., & Patras, I. (2012). DEAP: A database for emotion analysis; Using physiological signals. IEEE Transactions on Affective Computing, 3(1), 18–31. doi:10.1109/T-AFFC.2011.15.
Al-Shargie, F., Tariq, U., Alex, M., Mir, H., & Al-Nashash, H. (2019). Emotion Recognition Based on Fusion of Local Cortical Activations and Dynamic Functional Networks Connectivity: An EEG Study. IEEE Access, 7, 143550–143562. doi:10.1109/ACCESS.2019.2944008.
Xu, T., Zhou, Y., Wang, Z., & Peng, Y. (2018). Learning Emotions EEG-based Recognition and Brain Activity: A Survey Study on BCI for Intelligent Tutoring System. Procedia Computer Science, 130, 376–382. doi:10.1016/j.procs.2018.04.056.
Hu, X., Chen, J., Wang, F., & Zhang, D. (2019). Ten challenges for EEG-based affective computing. Brain Science Advances, 5(1), 1–20. doi:10.1177/2096595819896200.
Zhang, J., Yin, Z., Chen, P., & Nichele, S. (2020). Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review. Information Fusion, 59(January), 103–126. doi:10.1016/j.inffus.2020.01.011.
Bhandari, N. K., & Jain, M. (2020). Emotion recognition and classification using EEG: A review. International Journal of Scientific and Technology Research, 9(2), 1827–1836.
Al-Nafjan, A., Hosny, M., Al-Ohali, Y., & Al-Wabil, A. (2017). Review and classification of emotion recognition based on EEG brain-computer interface system research: A systematic review. Applied Sciences (Switzerland), 7(12). doi:10.3390/app7121239.
Ladakis, I., & Chouvarda, I. (2021). Overview of biosignal analysis methods for the assessment of stress. Emerging Science Journal, 5(2), 233–244. doi:10.28991/esj-2021-01267.
Made Agus Wirawan, I., Wardoyo, R., & Lelono, D. (2022). The challenges of emotion recognition methods based on electroencephalogram signals: A literature review. International Journal of Electrical and Computer Engineering, 12(2), 1508–1519. doi:10.11591/ijece.v12i2.pp1508-1519.
Sarma, P., & Barma, S. (2020). Review on Stimuli Presentation for Affect Analysis Based on EEG. IEEE Access, 8, 51991–52009. doi:10.1109/ACCESS.2020.2980893.
Pereira, E. T., & Martins Gomes, H. (2016). The role of data balancing for emotion classification using EEG signals. International Conference on Digital Signal Processing, DSP, 0, 555–559. doi:10.1109/ICDSP.2016.7868619.
Fernández, A., García, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. In Journal of Artificial Intelligence Research 61, 863–905. doi:10.1613/jair.1.11192.
Nekooeimehr, I., & Lai-Yuen, S. K. (2016). Adaptive semi-unsupervised weighted oversampling (A-SUWO) for imbalanced datasets. Expert Systems with Applications, 46, 405–416. doi:10.1016/j.eswa.2015.10.031.
Pradipta, G. A., Wardoyo, R., Musdholifah, A., & Sanjaya, I. N. H. (2021). Radius-SMOTE: A New Oversampling Technique of Minority Samples Based on Radius Distance for Learning from Imbalanced Data. IEEE Access, 9, 74763–74777. doi:10.1109/ACCESS.2021.3080316.
Mohammed, R., Rawashdeh, J., & Abdullah, M. (2020). Machine Learning with Oversampling and Undersampling Techniques: Overview Study and Experimental Results. 2020 11th International Conference on Information and Communication Systems, ICICS 2020, April, 243–248. doi:10.1109/ICICS49469.2020.239556.
Fernández, A., García, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. Journal of Artificial Intelligence Research, 61, 863–905. doi:10.1613/jair.1.11192.
Ding, X. W., Liu, Z. T., Li, D. Y., He, Y., & Wu, M. (2021). Electroencephalogram Emotion Recognition Based on Dispersion Entropy Feature Extraction Using Random Over-Sampling Imbalanced Data Processing. IEEE Transactions on Cognitive and Developmental Systems, 8920(c), 1–10,. doi:10.1109/TCDS.2021.3074811.
Sanguanmak, Y., & Hanskunatai, A. (2016). DBSM: The combination of DBSCAN and SMOTE for imbalanced data classification. 2016 13th International Joint Conference on Computer Science and Software Engineering, JCSSE 2016, 1–5. doi:10.1109/JCSSE.2016.7748928.
Sánchez, A. I., Morales, E. F., & Gonzalez, J. A. (2013). Synthetic oversampling of instances using clustering. International Journal on Artificial Intelligence Tools, 22(2), 1–21. doi:10.1142/S0218213013500085.
Barua, S., Islam, M. M., Yao, X., & Murase, K. (2014). MWMOTE - Majority weighted minority oversampling technique for imbalanced data set learning. IEEE Transactions on Knowledge and Data Engineering, 26(2), 405–425. doi:10.1109/TKDE.2012.232.
Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. Safe-Level-SMOTE : Safe-Level-Synthetic Minority Over-Sampling TEchnique. Pacific-Asia Conf. Knowl. Discov. Data Min, 475–482.
Sáez, J. A., Luengo, J., Stefanowski, J., & Herrera, F. (2015). SMOTE-IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Information Sciences, 291(C), 184–203. doi:10.1016/j.ins.2014.08.051.
Chen, D. W., Miao, R., Yang, W. Q., Liang, Y., Chen, H. H., Huang, L., Deng, C. J., & Han, N. (2019). A feature extraction method based on differential entropy and linear discriminant analysis for emotion recognition. Sensors (Switzerland), 19(7). doi:10.3390/s19071631.
Cheng, J., Chen, M., Li, C., Liu, Y., Song, R., Liu, A., & Chen, X. (2020). Emotion recognition from multi-channel EEG via deep forest. IEEE Journal of Biomedical and Health Informatics, 25(2), 453-464. doi.org/10.1109/JBHI.2020.2995767.
Li, J., Zhang, Z., & He, H. (2018). Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition. Cognitive Computation, 10(2), 368–380. doi:10.1007/s12559-017-9533-x.
Jiang, H., & Jia, J. (2020). Research on EEG Emotional Recognition Based on LSTM. In Communications in Computer and Information Science: Vol. 1160 CCIS, 409–417. doi:10.1007/978-981-15-3415-7_34.
Yang, Y., Wu, Q., Fu, Y., & Chen, X. (2018). Continuous convolutional neural network with 3D input for EEG-based emotion recognition. In International Conference on Neural Information Processing 433-443. Springer, Cham, Switzerland. doi.org/10.1007/978-3-030-04239-4_39.
Liu, Y., Ding, Y., Li, C., Cheng, J., Song, R., Wan, F., & Chen, X. (2020). Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network. Computers in Biology and Medicine, 123(March), 103927. doi:10.1016/j.compbiomed.2020.103927.
Chao, H., Dong, L., Liu, Y., & Lu, B. (2019). Emotion recognition from multiband EEG signals using capsnet. Sensors (Switzerland), 19(9). doi:10.3390/s19092212.
Elgayar, S., A.Abdelhamid, A. E., & Fayed, Z. T. A. (2017). Emotion Detection from Text: Survey. IOSR Journal of Computer Engineering, 19(4), 30–37. doi:10.9790/0661-1904053037.
Gebhard, P. (2005). ALMA - A layered model of affect. Proceedings of the International Conference on Autonomous Agents, 177–184. doi:10.1145/1082473.1082478.
Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161–1178. doi:10.1037/h0077714.
Yang, Y., Wu, Q., Qiu, M., Wang, Y., & Chen, X. (2018). Emotion Recognition from Multi-Channel EEG through Parallel Convolutional Recurrent Neural Network. Proceedings of the International Joint Conference on Neural Networks, 2018(July), 1–7. doi:10.1109/IJCNN.2018.8489331.
Tyng, C. M., Amin, H. U., Saad, M. N. M., & Malik, A. S. (2017). The influences of emotion on learning and memory. Frontiers in Psychology, 8(August), 1-22. doi:10.3389/fpsyg.2017.01454.
DOI: 10.28991/ESJ-2022-06-02-013
Refbacks
- There are currently no refbacks.