The Effect of Heat Exchanger Design on Heat Transfer Rate and Temperature Distribution

Saad S. Alrwashdeh, Handri Ammari, Mazen A. Madanat, Ala’a M. Al-Falahat


The heat exchanger (HE) is a device that is used to complete the process of heat transfer between different matters without direct mixing. Therefore, it is of great importance in the transfer of energy and the completion of various energy transition processes. In the processes of HE between different energy systems, many factors influence and play a major and important role in the efficiency of transformation and exchange in forms of energy, such as the length, the material type, the exchange fluid, the surrounding environment, and many other factors. In this work, the effect of the HE length of the parallel and counter flow HEs was investigated based on the use of computer simulation programs. There was a significant impact of the exchange factors, especially the length of the HEs in both the parallel and counter-flow HEs, on the quality and efficiency of the HE and the temperature distribution. The overall evaluation shows that by increasing the length of the HE for both parallel and counter-flow HEs, the heat transfer is increased and the heat distribution becomes more homogeneous, which aids in enhancing the transfer of energy efficiency inside the HEs.


Doi: 10.28991/ESJ-2022-06-01-010

Full Text: PDF


Heat Exchanger; Heat Transfer; Energy; Parallel and Counter Heat Exchanger.


Al-Falahat, A. M., Kardjilov, N., Khanh, T. V., Markötter, H., Boin, M., Woracek, R., ... & Manke, I. (2019). Energy-selective neutron imaging by exploiting wavelength gradients of double crystal monochromators—Simulations and experiments. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 943, 162477. doi:10.1016/j.nima.2019.162477.

Al-Najideen, M. I., & Alrwashdeh, S. S. (2017). Design of a solar photovoltaic system to cover the electricity demand for the faculty of Engineering-Mu'tah University in Jordan. Resource-Efficient Technologies, 3(4), 440-445. doi:10.1016/j.reffit.2017.04.005.

Alrwashdeh, S. S. (2022). Energy sources assessment in Jordan. Results in Engineering, 13, 100329. doi:10.1016/j.rineng.2021.100329.

Al-Falahat, A. M., Qadourah, J. A., Alrwashdeh, S. S., khater, R., Qatlama, Z., Alddibs, E., & Noor, M. (2022). Energy performance and economics assessments of a photovoltaic-heat pump system. Results in Engineering, 13, 100324. doi:10.1016/j.rineng.2021.100324.

Alrwashdeh, S. S. (2021). Investigation of the energy output from PV panels based on using different orientation systems in Amman-Jordan. Case Studies in Thermal Engineering, 28, 101580. doi:10.1016/j.csite.2021.101580.

Alrwashdeh, S. S. (2018). The effect of solar tower height on its energy output at Ma'an-Jordan. AIMS Energy, 6(6), 959-966. doi:10.3934/energy.2018.6.959.

Dinh, B. H., Kim, Y.-S., & Yoon, S. (2022). Experimental and numerical studies on the performance of horizontal U-type and spiral-coil-type ground heat exchangers considering economic aspects. Renewable Energy. doi:10.1016/j.renene.2022.01.001.

Alrwashdeh, S. S. (2018). Modelling of Operating Conditions of Conduction Heat Transfer Mode Using Energy 2D Simulation. Int. J. Online Eng., 14(9), 200-207. doi:10.3991/ijoe.v14i09.9116.

Alrwashdeh, S. S. (2018). Assessment of the energy production from PV racks based on using different solar canopy form factors in Amman-Jordan. International Journal of Engineering Research and Technology, 2018. 5 (10), 15-30.

Chen, Y.-S., Tian, J., Zhu, H.-H., Fu, Y., & Wang, N.-X. (2021). Experimental and numerical study on thermal performance of a fluoride salt-to-air heat exchanger. Annals of Nuclear Energy, 108876. doi:10.1016/j.anucene.2021.108876.

Alrwashdeh, S. S. (2019). Investigation of Wind Energy Production at Different Sites in Jordan Using the Site Effectiveness Method. Energy Engineering, 116(1), 47-59. doi:10.1080/01998595.2019.12043338.

Zhang, H., Shi, L., Xuan, W., Chen, T., Li, Y., Tian, H., & Shu, G. (2022). Analysis of printed circuit heat exchanger (PCHE) potential in exhaust waste heat recovery. Applied Thermal Engineering, 204, 117863. doi:10.1016/j.applthermaleng.2021.117863.

Li, H., Zhang, S., Ji, Y., Sun, M., Li, X., & Sheng, Y. (2022). The influence of catchment scale on comprehensive heat transfer performance about tube fin heat exchanger in numerical calculation. Energy Reports, 8, 147–155. doi:10.1016/j.egyr.2021.11.045.

Alrwashdeh, S.S. and F.M. Alsaraireh, (2018) Wind energy production assessment at different sites in Jordan using probability distribution functions. ARPN Journal of Engineering and Applied Sciences. 13(20), 8163-8172.

Alrwashdeh, S. S., FMA, M. A. S., Markötter, H., Kardjilov, N., Klages, M., Scholta, J., & Manke, I. (2018). In-situ investigation of water distribution in polymer electrolyte membrane fuel cells using high-resolution neutron tomography with 6.5 µm pixel size. AIMS Energy, 6(4), 607-614. doi:10.3934/energy.2018.4.607.

Alrwashdeh, S. S., & Ammari, H. (2019). Life cycle cost analysis of two different refrigeration systems powered by solar energy. Case Studies in Thermal Engineering, 16, 100559. doi:10.1016/j.csite.2019.100559.

Alrwashdeh, S. S., Manke, I., Markötter, H., Haußmann, J., Kardjilov, N., Hilger, A., ... & Banhart, J. (2017). Neutron radiographic in operando investigation of water transport in polymer electrolyte membrane fuel cells with channel barriers. Energy Conversion and Management, 148, 604-610. doi:10.1016/j.enconman.2017.06.032.

Alrwashdeh, S. S., Manke, I., Markötter, H., Klages, M., Göbel, M., Haußmann, J., ... & Banhart, J. (2017). In operando quantification of three-dimensional water distribution in nanoporous carbon-based layers in polymer electrolyte membrane fuel cells. ACS nano, 11(6), 5944-5949. doi:10.1021/acsnano.7b01720.

Alrwashdeh, S. S., Markötter, H., Haußmann, J., Arlt, T., Klages, M., Scholta, J., ... & Manke, I. (2016). Investigation of water transport dynamics in polymer electrolyte membrane fuel cells based on high porous micro porous layers. Energy, 102, 161-165. doi:10.1016/

Hang, P., Zhao, L., & Liu, G. (2022). Optimal design of heat exchanger network considering the fouling throughout the operating cycle. Energy, 241, 122913. doi:10.1016/

Göbel, M., Kirsch, S., Schwarze, L., Schmidt, L., Scholz, H., Haußmann, J., ... & Müller, B. R. (2018). Transient limiting current measurements for characterization of gas diffusion layers. Journal of Power Sources, 402, 237-245. doi:10.1016/j.jpowsour.2018.09.003.

Markötter, H., Manke, I., Böll, J., Alrwashdeh, S., Hilger, A., Klages, M., ... & Scholta, J. (2019). Morphology correction technique for tomographic in-situ and operando studies in energy research. Journal of Power Sources, 414, 8-12. doi:10.1016/j.jpowsour.2018.12.072.

Hameed, V. M., & Hamad, F. J. (2022). Implementation of novel triangular fins at a helical coil heat exchanger. Chemical Engineering and Processing - Process Intensification, 172, 108745. doi:10.1016/j.cep.2021.108745.

Saraireh, M.A., F.M. Alsaraireh, and S.S. Alrwashdeh, (2017). Investigation of heat transfer for staggered and in-line tubes. International Journal of Mechanical Engineering and Technology, 8(11), 476-483.

Kuppan, T. (2000). Heat exchanger design handbook, Marcel Dekker, Inc.

Li, N., Chen, J., Cheng, T., Klemeš, J. J., Varbanov, P. S., Wang, Q., ... & Zeng, M. (2020). Analysing thermal-hydraulic performance and energy efficiency of shell-and-tube heat exchangers with longitudinal flow based on experiment and numerical simulation. Energy, 202, 117757. doi:10.1016/

Li, N., Wang, J., Klemeš, J. J., Wang, Q., Varbanov, P. S., Yang, W., Liu, X., & Zeng, M. (2021). A target-evaluation method for heat exchanger network optimisation with heat transfer enhancement. Energy Conversion and Management, 238, 114154. doi:10.1016/j.enconman.2021.114154.

Sun, F., Markötter, H., Manke, I., Hilger, A., Alrwashdeh, S. S., Kardjilov, N., & Banhart, J. (2017). Complementary X-ray and neutron radiography study of the initial lithiation process in lithium-ion batteries containing silicon electrodes. Applied Surface Science, 399, 359-366. doi:10.1016/j.apsusc.2016.12.093.

Sun, F., Markötter, H., Zhou, D., Alrwashdeh, S. S. S., Hilger, A., Kardjilov, N., Manke, I., & Banhart, J. (2016). In Situ Radiographic Investigation of (De) Lithiation Mechanisms in a Tin-Electrode Lithium-Ion Battery. ChemSusChem, 9(9), 946–950. doi:10.1002/cssc.201600220.

Alrwashdeh, S. S. (2018). Assessment of photovoltaic energy production at different locations in Jordan. International Journal of Renewable Energy Research, 8(2), 797–804.

Alrwashdeh, S. S., Manke, I., Markötter, H., Haußmann, J., Arlt, T., Hilger, A., Al-Falahat, A. M., Klages, M., Scholta, J., & Banhart, J. (2017). Improved Performance of Polymer Electrolyte Membrane Fuel Cells with Modified Microporous Layer Structures. Energy Technology, 5(9), 1612–1618. doi:10.1002/ente.201700005.

Alsaad, M. A. (2013). Wind energy potential in selected areas in Jordan. Energy Conversion and Management, 65, 704–708. doi:10.1016/j.enconman.2011.12.037.

Ammari, H. D., Al-Rwashdeh, S. S., & Al-Najideen, M. I. (2015). Evaluation of wind energy potential and electricity generation at five locations in Jordan. Sustainable Cities and Society, 15, 135–143. doi:10.1016/j.scs.2014.11.005.

Palomba, V., Brancato, V., & Frazzica, A. (2019). Thermal performance of a latent thermal energy storage for exploitation of renewables and waste heat: An experimental investigation based on an asymmetric plate heat exchanger. Energy Conversion and Management, 200, 112121. doi:10.1016/j.enconman.2019.112121.

Popov, D., Fikiin, K., Stankov, B., Alvarez, G., Youbi-Idrissi, M., Damas, A., Evans, J., & Brown, T. (2019). Cryogenic heat exchangers for process cooling and renewable energy storage: A review. Applied Thermal Engineering, 153, 275–290. doi:10.1016/j.applthermaleng.2019.02.106.

Roux, J., Santarelli, M., & Aggarwal, S. K. (2018). Design of a Compact Heat Exchanger in a Methanation Plant for Renewable Energy Storage. Applied Thermal Engineering, 129, 747–760. doi:10.1016/j.applthermaleng.2017.10.040.

Yoon, S., Kim, M. J., Jeon, J. S., & Jung, Y. B. (2021). Significance evaluation of performance factors on horizontal spiral-coil ground heat exchangers. Journal of Building Engineering, 35, 102044. doi:10.1016/j.jobe.2020.102044.

Saleh, B., & Sundar, L. S. (2021). Experimental study on heat transfer, friction factor, entropy and exergy efficiency analyses of a corrugated plate heat exchanger using Ni/water nanofluids. International Journal of Thermal Sciences, 165, 106935. doi:10.1016/j.ijthermalsci.2021.106935.

Zhu, X., & Haglind, F. (2020). Relationship between inclination angle and friction factor of chevron-type plate heat exchangers. International Journal of Heat and Mass Transfer, 162, 120370. doi:10.1016/j.ijheatmasstransfer.2020.120370.

Chen, J., Liu, S., & Chang, X. (2021). Extragradient method and golden ratio method for equilibrium problems on Hadamard manifolds. International Journal of Computer Mathematics, 98(8), 1699–1712. doi:10.1080/00207160.2020.1846728.

Kozeki, M., Nariai, H., Furukawa, T., & Kurosu, K. (1970). A study of helically-coiled tube once-through steam generator. Bulletin of JSME, 13(66), 1485-1494. ttps://

Desai, S. R., & Kengar, R. V. (2019). Experimental analysis of fluid elastic vibrations in rotated square finned tube arrays subjected to water cross flow. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(17), 6124–6134. doi:10.1177/0954406219861132.

Deng, S., Nie, C., Wei, G., & Ye, W. B. (2019). Improving the melting performance of a horizontal shell-tube latent-heat thermal energy storage unit using local enhanced finned tube. Energy and Buildings, 183, 161–173. doi:10.1016/j.enbuild.2018.11.018.

Klemes, J. J., Arsenyeva, O., Kapustenko, P., & Tovazhnyanskyy, L. (2019). Compact heat exchangers for energy transfer intensification: low grade heat and fouling mitigation. CRC Press.

Guo, K., Zhang, N., & Smith, R. (2015). Optimisation of fin selection and thermal design of counter-current plate-fin heat exchangers. Applied Thermal Engineering, 78, 491–499. doi:10.1016/j.applthermaleng.2014.11.071.

Wang, Z., & Li, Y. (2016). Layer pattern thermal design and optimization for multistream plate-fin heat exchangers - A review. Renewable and Sustainable Energy Reviews, 53, 500–514. doi:10.1016/j.rser.2015.09.003.

Kapustenko, P. O., Klemeš, J. J., Matsegora, O. I., Arsenyev, P. Y., & Arsenyeva, O. P. (2019). Accounting for local thermal and hydraulic parameters of water fouling development in plate heat exchanger. Energy, 174, 1049–1059. doi:10.1016/

Figley, J., Sun, X., Mylavarapu, S. K., & Hajek, B. (2013). Numerical study on thermal hydraulic performance of a Printed Circuit Heat Exchanger. Progress in Nuclear Energy, 68, 89–96. doi:10.1016/j.pnucene.2013.05.003.

Zheng, Z., Fletcher, D. F., & Haynes, B. S. (2014). Transient laminar heat transfer simulations in periodic zigzag channels. International Journal of Heat and Mass Transfer, 71, 758–768. doi:10.1016/j.ijheatmasstransfer.2013.12.056.

Ma, T., Li, L., Xu, X. Y., Chen, Y. T., & Wang, Q. W. (2015). Study on local thermal–hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature. Energy Conversion and Management, 104, 55–66. doi:10.1016/j.enconman.2015.03.016.

Sharma, H., Monnier, É., Mandil, G., Zwolinski, P., & Colasson, S. (2019). Comparison of environmental assessment methodology in hybrid energy system simulation software. Procedia CIRP, 80, 221-227. doi:10.1016/j.procir.2019.01.007

Zou, Y., Xiang, K., Zhan, Q., & Li, Z. (2021). A simulation-based method to predict the life cycle energy performance of residential buildings in different climate zones of China. Building and Environment, 193, 107663. doi:10.1016/j.buildenv.2021.107663.

Gobakis, K., & Kolokotsa, D. (2017). Coupling building energy simulation software with microclimatic simulation for the evaluation of the impact of urban outdoor conditions on the energy consumption and indoor environmental quality. Energy and Buildings, 157, 101–115. doi:10.1016/j.enbuild.2017.02.020.

Alaqel, S., Saleh, N. S., Djajadiwinata, E., Saeed, R., Alswaiyd, A., Al-Ansary, H., El-Leathy, A., Zeitoun, O., Jeter, S., Abdel-Khalik, S., Khayyat, A., Danish, S., & Al-Suhaibani, Z. (2021). A novel particle-to-fluid direct-contact counter-flow heat exchanger for CSP power generation applications: Design features and experimental testing. Renewable Energy, 170, 905–926. doi:10.1016/j.renene.2021.02.049.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-01-010


  • There are currently no refbacks.

Copyright (c) 2022 Saad Alrwashdeh, Handri Ammari, Mazen A. Madanat, Ala’a M. Al-Falahat