Superoxide Dismutase Reduces Creatinine and NGAL by Restoring Oxidative Balance during Sepsis

Jufitriani Ismy, Maimun Syukri, Dessy R. Emril, Nanan Sekarwana, Jufriady Ismy

Abstract


Sepsis-associated overproduction of reactive oxygen species (ROS) and nitric oxide (NO) during pathogen infection leads to overwhelming oxidative stress, which has been recognized as a primary contributor to acute kidney injury (AKI). Hence, antioxidant therapy has been widely explored in order to find an effective treatment for sepsis-related AKI, in particular by using endogenous antioxidant – superoxide dismutase (SOD). We assessed the effect of oral SOD on the alteration of AKI biomarkers (creatinine and Neutrophil Gelatinase-Associated Lipocalin – NGAL) in endotoxin-induced septic murine. The animals were assigned as a healthy control, a septic control, and three treatment groups (250, 500, and 1000 IU oral SOD). Treatment of SOD was carried out by force-feeding for 16 weeks prior to intraperitoneal injection of lipopolysaccharide (LPS). The sepsis was assessed using the murine sepsis score (MSS) after 12 hours post-LPS injection, where the changes in plasma SOD, ROS, NO, creatinine, and NGAL were measured by enzyme-linked immunosorbent assay (ELISA). During sepsis, SOD was significantly decreased from its baseline level while other biomarkers were significantly increased (p<0.05) – except for NGAL. MSS exhibited a declining trend in SOD dosage-dependent manner, and was significantly different with that of septic control group at SOD dosage of 1000 IU (p<0.05). SOD treatment with a dosage as low as 250 IU could prevent the abnormal expression of the tested biomarkers during sepsis. There were significant reduction of plasma ROS, NO, creatine and NGAL in rats treated with 1000 IU SOD. Our study suggests the protective effect of SOD against sepsis-induced AKI by scavenging ROS and NO.

 

Doi: 10.28991/ESJ-2022-06-02-06

Full Text: PDF


Keywords


Nitric Oxide (NO); Sepsis; Acute Kidney Injury; Superoxide Dismutase; NGAL; Oxidative Stress.

References


Kolhe, N. V., Stevens, P. E., Crowe, A. V., Lipkin, G. W., & Harrison, D. A. (2008). Case mix, outcome and activity for patients with severe acute kidney injury during the first 24 hours after admission to an adult, general critical care unit: Application of predictive models from a secondary analysis of the ICNARC Case Mix Programme Database. Critical Care, 12(SUPPL. 1), 2. doi:10.1186/cc7003.

Uchino, S., Kellum, J. A., Bellomo, R., Doig, G. S., Morimatsu, H., Morgera, S., Schetz, M., Tan, I., Bouman, C., Macedo, E., Gibney, N., Tolwani, A., & Ronco, C. (2005). Acute renal failure in critically ill patients: A multinational, multicenter study. Journal of the American Medical Association, 294(7), 813–818. doi:10.1001/jama.294.7.813.

Pundziene, B., Dobiliene, D., & Rudaitis, Š. (2010). Acute kidney injury in pediatric patients: Experience of a single center during an 11-year period. Medicina, 46(8), 511–515. doi:10.3390/medicina46080073.

Mehta, P., Sinha, A., Sami, A., Hari, P., Kalaivani, M., Gulati, A., Kabra, M., Kabra, S. K., Lodha, R., & Bagga, A. (2012). Incidence of acute kidney injury in hospitalized children. Indian Pediatrics, 49(7), 537–542. doi:10.1007/s13312-012-0121-6.

Mehta, R. L., Bouchard, J., Soroko, S. B., Ikizler, T. A., Paganini, E. P., Chertow, G. M., & Himmelfarb, J. (2011). Sepsis as a cause and consequence of acute kidney injury: Program to Improve Care in Acute Renal Disease. Intensive Care Medicine, 37(2), 241–248. doi:10.1007/s00134-010-2089-9.

Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 117(21), 11727–11734. doi:10.1073/pnas.2003138117.

Manrique-Caballero, C. L., Del Rio-Pertuz, G., & Gomez, H. (2021). Sepsis-Associated Acute Kidney Injury. Critical Care Clinics, 37(2), 279–301. doi:10.1016/j.ccc.2020.11.010.

Peerapornratana, S., Manrique-Caballero, C. L., Gómez, H., & Kellum, J. A. (2019). Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney International, 96(5), 1083–1099. doi:10.1016/j.kint.2019.05.026.

Qian, J. Y., Wang, B., Lv, L. L., & Liu, B. C. (2021). Pathogenesis of Acute Kidney Injury in Coronavirus Disease 2019. Frontiers in Physiology, 12, 586589. doi:10.3389/fphys.2021.586589.

Aksu, U., Demirci, C., & Ince, C. (2011). The pathogenesis of acute kidney injury and the toxic triangle of oxygen, reactive oxygen species and nitric oxide. Contributions to Nephrology, 174, 119–128. doi:10.1159/000329249.

Hsiao, S. Y., Kung, C. Te, Su, C. M., Lai, Y. R., Huang, C. C., Tsai, N. W., Wang, H. C., Cheng, B. C., Su, Y. J., Lin, W. C., Chiang, Y. F., & Lu, C. H. (2020). Impact of oxidative stress on treatment outcomes in adult patients with sepsis: A prospective study. Medicine, 99(26), e20872. doi:10.1097/MD.0000000000020872.

Galley, H. F. (2011). Oxidative stress and mitochondrial dysfunction in sepsis. British Journal of Anaesthesia, 107(1), 57–64. doi:10.1093/bja/aer093.

Rahbar Saadat, Y., Hosseiniyan Khatibi, S. M., Ardalan, M., Barzegari, A., & Zununi Vahed, S. (2021). Molecular pathophysiology of acute kidney injury: The role of sirtuins and their interactions with other macromolecular players. Journal of Cellular Physiology, 236(5), 3257–3274. doi:10.1002/jcp.30084.

Jin, L., Yu, B., Armando, I., & Han, F. (2021). Mitochondrial DNA-Mediated Inflammation in Acute Kidney Injury and Chronic Kidney Disease. Oxidative Medicine and Cellular Longevity, 2021, 9985603. doi:10.1155/2021/9985603.

Rosa, A. C., Corsi, D., Cavi, N., Bruni, N., & Dosio, F. (2021). Superoxide dismutase administration: A review of proposed human uses. Molecules, 26(7), 1844. doi:10.3390/molecules26071844.

Zarbock, A., Gomez, H., & Kellum, J. A. (2014). Sepsis-induced acute kidney injury revisited: Pathophysiology, prevention and future therapies. Current Opinion in Critical Care, 20(6), 588–595. doi:10.1097/MCC.0000000000000153.

Kumar, S., Gupta, E., Kaushik, S., Kumar Srivastava, V., Mehta, S. K., & Jyoti, A. (2018). Evaluation of oxidative stress and antioxidant status: Correlation with the severity of sepsis. Scandinavian Journal of Immunology, 87(4), 12653. doi:10.1111/sji.12653.

Webb, C. B., Lehman, T. L., & McCord, K. W. (2008). Effects of an oral superoxide dismutase enzyme supplementation on indices of oxidative stress, proviral load, and CD4:CD8 ratios in asymptomatic FIV-infected cats. Journal of Feline Medicine and Surgery, 10(5), 423–430. doi:10.1016/j.jfms.2008.01.008.

Naito, Y., Akagiri, S., Uchiyama, K., Kokura, S., Yoshida, N., Hasegawa, G., Nakamura, N., Ichikawa, H., Toyokuni, S., Ijichi, T., & Yoshikawa, T. (2005). Reduction of diabetes-induced renal oxidative stress by a cantaloupe melon extract/gliadin biopolymers, oxykine, in mice. BioFactors, 23(2), 85–95. doi:10.1002/biof.5520230204.

Warner, B. W., Hasselgren, P. O., James, J. H., Bialkowska, H., Rigel, D. F., Ogle, C., & Fischer, J. E. (1987). Superoxide Dismutase in Rats with Sepsis: Effect on Survival Rate and Amino Acid Transport. Archives of Surgery, 122(10), 1142–1146. doi:10.1001/archsurg.1987.01400220052010.

Constantino, L., Gonçalves, R. C., Giombelli, V. R., Tomasi, C. D., Vuolo, F., Kist, L. W., de Oliveira, G. M. T., Pasquali, M. A. de B., Bogo, M. R., Mauad, T., Horn, A., Melo, K. V, Fernandes, C., Moreira, J. C. F., Ritter, C., & Dal-Pizzol, F. (2014). Regulation of lung oxidative damage by endogenous superoxide dismutase in sepsis. Intensive Care Medicine Experimental, 2(1), 17. doi:10.1186/2197-425x-2-17.

Copeland, S., Shaw Warren, H., Lowry, S. F., Galvano, S. E., & Remick, D. (2005). Acute inflammatory response to endotoxin in mice and humans. Clinical and Diagnostic Laboratory Immunology, 12(1), 60–67. doi:10.1128/CDLI.12.1.60-67.2005.

Jesmin, S., Gando, S., Zaedi, S., Prodhan, S. H., Sawamura, A., Miyauchi, T., Hiroe, M., & Yamaguchi, N. (2009). Protease-activated receptor 2 blocking peptide counteracts endotoxin-induced inflammation and coagulation and ameliorates renal fibrin deposition in a rat model of acute renal failure. Shock, 32(6), 626–632. doi:10.1097/SHK.0b013e3181a5359c.

Shrum, B., Anantha, R. V., Xu, S. X., Donnelly, M., Haeryfar, S. M. M., McCormick, J. K., & Mele, T. (2014). A robust scoring system to evaluate sepsis severity in an animal model. BMC Research Notes, 7(1), 233. doi:10.1186/1756-0500-7-233.

Bugger, H., & Pfeil, K. (2020). Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1866(7), 165768. doi:10.1016/j.bbadis.2020.165768.

Kamis, F., Yegenaga, I., Musul, M., Baydemir, C., Bek, S., Kalender, B., & Baykara, N. (2016). Neutrophil gelatinase-associated lipocalin levels during the first 48 hours of intensive care may indicate upcoming acute kidney injury. Journal of Critical Care, 34, 89–94. doi:10.1016/j.jcrc.2016.04.012.

Anderberg, S. B., Luther, T., & Frithiof, R. (2017). Physiological aspects of Toll-like receptor 4 activation in sepsis-induced acute kidney injury. Acta Physiologica, 219(3), 573–588. doi:10.1111/apha.12798.

Di Micco, L., Quinn, R. R., Ronksley, P. E., Bellizzi, V., Lewin, A. M., Cianciaruso, B., & Ravani, P. (2013). Urine creatinine excretion and clinical outcomes in CKD. Clinical Journal of the American Society of Nephrology, 8(11), 1877–1883. doi:10.2215/CJN.01350213.

Wang, K., Xie, S., Xiao, K., Yan, P., He, W., & Xie, L. (2018). Biomarkers of sepsis-induced acute kidney injury. BioMed Research International, 2018, 6937947. doi:10.1155/2018/6937947.

Bellomo, R., Kellum, J. A., & Ronco, C. (2004). Defining acute renal failure: Physiological principles. Intensive Care Medicine, 30(1), 33–37. doi:10.1007/s00134-003-2078-3.

Mishra, J., Dent, C., Tarabishi, R., Mitsnefes, M. M., Ma, Q., Kelly, C., Ruff, S. M., Zahedi, K., Shao, M., Bean, J., Mori, K., Barasch, J., & Devarajan, P. (2005). Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet, 365(9466), 1231–1238. doi:10.1016/S0140-6736(05)74811-X.

Zhang, Y. li, Qiao, S. kai, Wang, R. ying, & Guo, X. Nan. (2018). NGAL attenuates renal ischemia/reperfusion injury through autophagy activation and apoptosis inhibition in rats. Chemico-Biological Interactions, 289, 40–46. doi:10.1016/j.cbi.2018.04.018.

Kjeldsen, L., Johnsen, A. H., Sengelov, H., & Borregaard, N. (1993). Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. Journal of Biological Chemistry, 268(14), 10425–10432. doi:10.1016/s0021-9258(18)82217-7.

Han, M., Li, Y., Liu, M., Li, Y., & Cong, B. (2012). Renal neutrophil gelatinase associated lipocalin expression in lipopolysaccharide-induced acute kidney injury in the rat. BMC Nephrology, 13(1), 25. doi:10.1186/1471-2369-13-25.

Smertka, M., Wroblewska, J., Suchojad, A., Majcherczyk, M., Jadamus-Niebroj, D., Owsianka-Podlesny, T., Brzozowska, A., & Maruniak-Chudek, I. (2014). Serum and urinary NGAL in septic newborns. BioMed Research International, 2014, 717318. doi:10.1155/2014/717318.

Chang, W., Zhu, S., Pan, C., Xie, J. F., Liu, S. Q., Qiu, H. B., & Yang, Y. (2018). Predictive utilities of neutrophil gelatinase-associated lipocalin (NGAL) in severe sepsis. Clinica Chimica Acta, 481, 200–206. doi:10.1016/j.cca.2018.03.020.

Pellegrino, D., La Russa, D., & Marrone, A. (2019). Oxidative imbalance and kidney damage: New study perspectives from animal models to hospitalized patients. Antioxidants, 8(12), 8. doi:10.3390/antiox8120594.

Macarthur, H., Couri, D. M., Wilken, G. H., Westfall, T. C., Lechner, A. J., Matuschak, G. M., Chen, Z., & Salvemini, D. (2003). Modulation of serum cytokine levels by a novel superoxide dismutase mimetic, M40401, in an Escherichia coli model of septic shock: Correlation with preserved circulating catecholamines. Critical Care Medicine, 31(1), 237–245. doi:10.1097/00003246-200301000-00037.

Chen, G. D., Zhang, J. L., Chen, Y. T., Zhang, J. X., Wang, T., & Zeng, Q. Y. (2018). Insulin alleviates mitochondrial oxidative stress involving upregulation of superoxide dismutase 2 and uncoupling protein 2 in septic acute kidney injury. Experimental and Therapeutic Medicine, 15(4), 3967–3975. doi:10.3892/etm.2018.5890.

Pickkers, P., Heemskerk, S., Schouten, J., Laterre, P. F., Vincent, J. L., Beishuizen, A., Jorens, P. G., Spapen, H., Bulitta, M., Peters, W. H. M., & van der Hoeven, J. G. (2012). Alkaline phosphatase for treatment of sepsis-induced acute kidney injury: A prospective randomized double-blind placebo-controlled trial. Critical Care, 16(1), 14. doi:10.1186/cc11159.

Zhang, W., Yang, S., Cui, L., & Zhang, J. (2016). Neutrophil gelatinase-associated lipocalin worsens ischemia/reperfusion damage of kidney cells by autophagy. Renal Failure, 38(7), 1136–1140. doi:10.3109/0886022X.2016.1158041.

De Blasio, M. J., Ramalingam, A., Cao, A. H., Prakoso, D., Ye, J. M., Pickering, R., Watson, A. M. D., de Haan, J. B., Kaye, D. M., & Ritchie, R. H. (2017). The superoxide dismutase mimetic tempol blunts diabetes-induced upregulation of NADPH oxidase and endoplasmic reticulum stress in a rat model of diabetic nephropathy. European Journal of Pharmacology, 807, 12–20. doi:10.1016/j.ejphar.2017.04.026.

Cao, P., Ito, O., Ito, D., Rong, R., Zheng, Y., & Kohzuki, M. (2020). Combination of Exercise Training and SOD Mimetic Tempol Enhances Upregulation of Nitric Oxide Synthase in the Kidney of Spontaneously Hypertensive Rats. International Journal of Hypertension, 2020, 2142740. doi:10.1155/2020/2142740.

Lin, J., Fernandez, H., Shashaty, M. G. S., Negoianu, D., Testani, J. M., Berns, J. S., Parikh, C. R., & Perry Wilson, F. (2015). False-positive rate of AKI using consensus creatinine–based criteria. Clinical Journal of the American Society of Nephrology, 10(10), 1723–1731. doi:10.2215/CJN.02430315.

Lippi, G., & Plebani, M. (2012). Neutrophil gelatinase-associated lipocalin (NGAL): The laboratory perspective. Clinical Chemistry and Laboratory Medicine, 50(9), 1483–1487. doi:10.1515/cclm-2012-0344.


Full Text: PDF

DOI: 10.28991/ESJ-2022-06-02-06

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Jufitriani Ismy, Maimun Syukri, Dessy R Emril, Nanan Sekarwana, Jufriady Ismy