Response Surface Methodology for Formulating PVA/Starch/Lignin Biodegradable Plastic
Abstract
Doi: 10.28991/ESJ-2022-06-02-03
Full Text: PDF
Keywords
References
Wang, W., Zhang, H., Jia, R., Dai, Y., Dong, H., Hou, H., & Guo, Q. (2018). High performance extrusion blown starch/polyvinyl alcohol/clay nanocomposite films. Food Hydrocolloids, 79, 534–543. doi:10.1016/j.foodhyd.2017.12.013.
Rydz, J., Musioł, M., Zawidlak-Węgrzyńska, B., & Sikorska, W. (2018). Present and Future of Biodegradable Polymers for Food Packaging Applications. Biopolymers for Food Design, 431–467. doi:10.1016/b978-0-12-811449-0.00014-1.
Guo, M., Trzcinski, A. P., Stuckey, D. C., & Murphy, R. J. (2011). Anaerobic digestion of starch-polyvinyl alcohol biopolymer packaging: Biodegradability and environmental impact assessment. Bioresource Technology, 102(24), 11137–11146. doi:10.1016/j.biortech.2011.09.061.
Zanela, J., Casagrande, M., Shirai, M. A., De Lima, V. A., & Yamashita, F. (2016). Biodegradable blends of starch/polyvinyl alcohol/glycerol: Multivariate analysis of the mechanical properties. Polimeros, 26(3), 193–196. doi:10.1590/0104-1428.2420.
Tang, X., & Alavi, S. (2011). Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydrate Polymers, 85(1), 7–16. doi:10.1016/j.carbpol.2011.01.030.
Cano, A. I., Cháfer, M., Chiralt, A., & González-Martínez, C. (2015). Physical and microstructural properties of biodegradable films based on pea starch and PVA. Journal of Food Engineering, 167, 59–64. doi:10.1016/j.jfoodeng.2015.06.003.
Kaur, K., Jindal, R., Maiti, M., & Mahajan, S. (2019). Studies on the properties and biodegradability of PVA/Trapa natans starch (N-st) composite films and PVA/N-st-g-poly (EMA) composite films. International Journal of Biological Macromolecules, 123, 826–836. doi:10.1016/j.ijbiomac.2018.11.134.
Patil, S., Bharimalla, A. K., Mahapatra, A., Dhakane-Lad, J., Arputharaj, A., Kumar, M., Raja, A. S. M., & Kambli, N. (2021). Effect of polymer blending on mechanical and barrier properties of starch-polyvinyl alcohol based biodegradable composite films. Food Bioscience, 44, 101352. doi:10.1016/j.fbio.2021.101352.
Zou, G. X., Jin, P. Q., & Xin, L. Z. (2008). Extruded starch/PVA composites: Water resistance, thermal properties, and morphology. Journal of Elastomers and Plastics, 40(4), 303–316. doi:10.1177/0095244307085787.
Kun, D., & Pukánszky, B. (2017). Polymer/lignin blends: Interactions, properties, applications. European Polymer Journal, 93, 618–641. doi:10.1016/j.eurpolymj.2017.04.035.
Su, L., & Fang, G. (2014). Characterization of cross-linked alkaline lignin/poly (vinyl alcohol) film with a formaldehyde cross-linker. BioResources, 9(3), 4477–4488. doi:10.15376/biores.9.3.4477-4488.
Su, L., Xing, Z., Wang, D., Xu, G., Ren, S., & Fang, G. (2013). Mechanical properties research and structural characterization of alkali lignin / poly(vinyl alcohol) reaction films. BioResources, 8(3), 3532–3543. doi:10.15376/biores.8.3.3532-3543.
Zhang, X., Liu, W., Liu, W., & Qiu, X. (2020). High performance PVA/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties. International Journal of Biological Macromolecules, 142, 551–558. doi:10.1016/j.ijbiomac.2019.09.129.
Monteiro, V. A. C., da Silva, K. T., da Silva, L. R. R., Mattos, A. L. A., de Freitas, R. M., Mazzetto, S. E., Lomonaco, D., & Avelino, F. (2021). Selective acid precipitation of Kraft lignin: a tool for tailored biobased additives for enhancing PVA films properties for packaging applications. Reactive and Functional Polymers, 166, 104980. doi:10.1016/j.reactfunctpolym.2021.104980.
Baumberger, S., Lapierre, C., & Monties, B. (1998). Utilization of Pine Kraft Lignin in Starch Composites: Impact of Structural Heterogeneity. Journal of Agricultural and Food Chemistry, 46(6), 2234–2240. doi:10.1021/jf971067h.
Spiridon, I., Teaca, C. A., & Bodirlau, R. (2011). Preparation and characterization of adipic acid-modified starch microparticles/plasticized starch composite films reinforced by lignin. Journal of Materials Science, 46(10), 3241–3251. doi:10.1007/s10853-010-5210-0.
De Miranda, C. S., Ferreira, M. S., Magalhães, M. T., Gonçalves, A. P. B., De Oliveira, J. C., Guimarães, D. H., & José, N. M. (2015). Effect of the glycerol and lignin extracted from piassava fiber in cassava and corn starch films. Materials Research, 18(Suppl 2), 260–264. doi:10.1590/1516-1439.370414.
de Oliveira Begali, D., Ferreira, L. F., de Oliveira, A. C. S., Borges, S. V., de Sena Neto, A. R., de Oliveira, C. R., Yoshida, M. I., & Sarantopoulos, C. I. G. L. (2021). Effect of the incorporation of lignin microparticles on the properties of the thermoplastic starch/pectin blend obtained by extrusion. International Journal of Biological Macromolecules, 180, 262–271. doi:10.1016/j.ijbiomac.2021.03.076.
Wulandari, R. & Ratnawati, R. (2019). Effects of processing temperature and lignin on properties of starch/PVA/lignin film prepared by melt compounding. IOP Conf. Series: Journal of Physics: Conf. Series 1295, 012058. doi:10.1088/1742-6596/1295/1/012058.
Shi, B., Wideman, G., & Wang, J. H. (2012). Improving the processability of water-soluble films based on filled thermoplastic polyvinyl alcohol. International Polymer Processing, 27(2), 231–236. doi:10.3139/217.2517.
Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., da Silva, E. G. P., Portugal, L. A., dos Reis, P. S., Souza, A. S., & dos Santos, W. N. L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179–186. doi:10.1016/j.aca.2007.07.011.
Breig, S. J. M., & Luti, K. J. K. (2021). Response surface methodology: A review on its applications and challenges in microbial cultures. Materials Today: Proceedings, 42, 2277–2284. doi:10.1016/j.matpr.2020.12.316.
Goring, D. A. I. (1965). Thermal softening, adhesive properties, and glass transitions in lignin, hemicellulose and cellulose. In F. Bolam (Ed.), Trans. of the IIIrd Fund. Res. Symp. Cambrigde (Vol. 1, pp. 555–568). FRC. doi:10.15376/frc.1965.1.555.
Reddy, I. A. K., & Ghatak, H. R. (2018). Low-temperature thermal degradation behaviour of non-wood soda lignins and spectroscopic analysis of residues. Journal of Thermal Analysis and Calorimetry, 132(1), 407–423. doi:10.1007/s10973-017-6912-1.
Zhao, J., Xiuwen, W., Hu, J., Liu, Q., Shen, D., & Xiao, R. (2014). Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS. Polymer Degradation and Stability, 108, 133–138. doi:10.1016/j.polymdegradstab.2014.06.006.
Holland, B. J., & Hay, J. N. (2001). The thermal degradation of poly(vinyl alcohol). Polymer, 42(16), 6775–6783. doi:10.1016/S0032-3861(01)00166-5.
Yang, H., Xu, S., Jiang, L., & Dan, Y. (2012). Thermal decomposition behavior of poly (vinyl alcohol) with different hydroxyl content. Journal of Macromolecular Science, Part B: Physics, 51(3), 464–480. doi:10.1080/00222348.2011.597687.
Shie, J. L., Chen, Y. H., Chang, C. Y., Lin, J. P., Lee, D. J., & Wu, C. H. (2002). Thermal pyrolysis of poly(vinyl alcohol) and its major products. Energy and Fuels, 16(1), 109–118. doi:10.1021/ef010082s.
Zhang, X., Golding, J., & Burgar, I. (2002). Thermal decomposition chemistry of starch studied by 13C high-resolution solid-state NMR spectroscopy. Polymer, 43(22), 5791–5796. doi:10.1016/S0032-3861(02)00546-3.
Korbag, I. & Saleh, S. M. (2016). Studies on the formation of intermolecular interactions and structural characterization of polyvinyl alcohol/lignin film. International Journal of Environmental Studies, 73(2), 226–235. doi:10.1080/00207233.2016.1143700.
Nasiri, A., Wearing, J., & Dubé, M. A. (2020). Using lignin to modify starch-based adhesive performance. ChemEngineering, 4, 3. doi:10.3390/chemengineering4010003.
Yang, J., Ching, Y. C., & Chuah, C. H. (2019). Applications of lignocellulosic fibers and lignin in bioplastics: A review. Polymers, 11(5), 1–26. doi:10.3390/polym11050751.
Zhang, Y., Liao, J., Fang, X., Bai, F., Qiao, K., & Wang, L. (2017). Renewable High-Performance Polyurethane Bioplastics Derived from Lignin-Poly(ε-caprolactone). ACS Sustainable Chemistry and Engineering, 5(5), 4276–4284. doi:10.1021/acssuschemeng.7b00288.
Alinejad, M., Henry, C., Nikafshar, S., Gondaliya, A., Bagheri, S., Chen, N., Singh, S. K., Hodge, D. B., & Nejad, M. (2019). Lignin-based polyurethanes: Opportunities for bio-based foams, elastomers, coatings and adhesives. Polymers, 11(7), 1202. doi:10.3390/polym11071202.
Retnowati, D. S., Ratnawati, R., & Purbasari, A. (2015). A biodegradable film from jackfruit (Artocarpus heterophyllus) and durian (Durio zibethinus) seed flours. Scientific Study & Research: Chemistry & Chemical Engineering, Biotechnology, Food Industry, 16(4), 395–404
Tarique, J., Sapuan, S. M., & Khalina, A. (2021). Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Scientific Reports, 11(1), 1–17. doi:10.1038/s41598-021-93094-y.
Kim, D. Y., Lee, J. Bin, Lee, D. Y., & Seo, K. H. (2020). Plasticization effect of poly(lactic acid) in the poly(butylene adipate-co-terephthalate) blown film for tear resistance improvement. Polymers, 12(9), 1–13. doi:10.3390/POLYM12091904.
Jusoh, E. R., Halim Shah Ismail, M., Abdullah, L. C., Robiah, Y., & Wan Abdul Rahman, W. A. (2012). Crude palm oil as a bioadditive in polypropylene blown films. BioResources, 7(1), 859–867. doi:10.15376/biores.7.1.0859-0867.
Kong, R., Wang, J., Cheng, M., Lu, W., Chen, M., Zhang, R., & Wang, X. (2020). Development and characterization of corn starch/PVA active films incorporated with carvacrol nanoemulsions. International Journal of Biological Macromolecules, 164, 1631–1639. doi:10.1016/j.ijbiomac.2020.08.016.
Kochkina, N. E., & Lukin, N. D. (2020). Structure and properties of biodegradable maize starch/chitosan composite films as affected by PVA additions. International Journal of Biological Macromolecules, 157, 377–384. doi:10.1016/j.ijbiomac.2020.04.154.
Domene-López, D., Guillén, M. M., Martin-Gullon, I., García-Quesada, J. C., & Montalbán, M. G. (2018). Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends. Carbohydrate Polymers, 202(June 2018e), 299–305. doi:10.1016/j.carbpol.2018.08.137.
AKDOĞAN, E. (2020). the Effects of High Density Polyethylene Addition To Low Density Polyethylene Polymer on Mechanical, Impact and Physical Properties. European Journal of Technic, 1(2020), 25–37. doi:10.36222/ejt.646693.
Bukovska, P., Burg, P., Masan, V., Zemanek, P., & Dusek, M. (2019). Tensile properties of degradable plastic bag materials. MendelNet Conference (November 6–7), Mendel University in Brno, Czech Republic, 505–510.
Mittal, A., Garg, S., Kohli, D., Maiti, M., Jana, A. K., & Bajpai, S. (2016). Effect of cross linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films. Carbohydrate Polymers, 151, 926–938. doi:10.1016/j.carbpol.2016.06.037.
Tanwar, R., Gupta, V., Kumar, P., Kumar, A., Singh, S., & Gaikwad, K. K. (2021). Development and characterization of PVA-starch incorporated with coconut shell extract and sepiolite clay as an antioxidant film for active food packaging applications. International Journal of Biological Macromolecules, 185, 451–461. doi:10.1016/j.ijbiomac.2021.06.179.
Ray, R., Narayan Das, S., & Das, A. (2019). Mechanical, thermal, moisture absorption and biodegradation behaviour of date palm leaf reinforced PVA/starch hybrid composites. Materials Today: Proceedings, 41, 376–381. doi:10.1016/j.matpr.2020.09.564.
Zhou, P., Luo, Y., Lv, Z., Sun, X., Tian, Y., & Zhang, X. (2021). Melt-processed poly (vinyl alcohol)/corn starch/nanocellulose composites with improved mechanical properties. International Journal of Biological Macromolecules, 183, 1903–1910. doi:10.1016/j.ijbiomac.2021.06.011.
Hong, S., Wu, Y., Wang, B., Zheng, Y., Gao, W., & Li, G. (2014). High-velocity oxygen-fuel spray parameter optimization of nanostructured WC-10Co-4Cr coatings and sliding wear behavior of the optimized coating. Materials and Design, 55, 286–291. doi:10.1016/j.matdes.2013.10.002.
Ardestani, N. S., & Amani, M. (2021). Production of Anthraquinone Violet 3RN nanoparticles via the GAS process: Optimization of the process parameters using Box-Behnken design. Dyes and Pigments, 193, 109471. doi:10.1016/j.dyepig.2021.109471.
Brebu, M., & Vasile, C. (2010). Thermal degradation of lignin - A review. Cellulose Chemistry and Technology, 44(9), 353–363.
Ujianto, O., Marzuki, & Radini, F. A. (2016). Natural rubber based compatibilizer prepared in twin screw extruder: Optimization percentage of grafted maleic anhydride using experimental design. Materials Science Forum, 864, 13–17. doi:10.4028/www.scientific.net/MSF.864.13.
DOI: 10.28991/ESJ-2022-06-02-03
Refbacks
- There are currently no refbacks.