Response Surface Methodology for Formulating PVA/Starch/Lignin Biodegradable Plastic

Ratnawati Ratnawati, Retno Wulandari, Andri Cahyo Kumoro, Hadiyanto Hadiyanto

Abstract


The use of petroleum-based plastics has raised environmental issues as more plastic waste enters and accumulates in the environment. It has led to the development of biodegradable plastics. Starch is one of the potential materials to make biodegradable plastic, but starch-based plastic has poor mechanical strength. Blending starch with poly(vinyl alcohol) (PVA) and lignin is expected to improve the mechanical properties of the plastic. Biodegradable plastic films from PVA/starch/lignin blends with glycerol as a plasticizer were prepared using an internal mixer for compounding and a hot press molding machine for film making. The percentage of lignin (2-10%), glycerol (25-65%), and mixing temperature (190-230 oC) were varied according to the three levels of the Box-Behnken design. The ANOVA evaluation revealed that glycerol had the most significant effect on the mechanical properties of the film. Then, three models for the estimation of tensile strength, elongation at break, and tear resistance were developed. As expected, the models satisfactorily predict the effect of all input variables on the response variables. The optimum conditions for preparing the film were acquired from the equations, namely 197.6 oC for the temperature, 10% for lignin, and 45.1% for glycerol. The biodegradable plastic prepared using the optimum conditions possessed a tensile strength of 8.46 ± 1.08 MPa, an elongation at break of 139.00 ± 8.59%, and a tear resistance of 69.50 ± 2.50 N/mm. These values are in good agreement with the predicted values.

 

Doi: 10.28991/ESJ-2022-06-02-03

Full Text: PDF


Keywords


Melt Compounding; Optimization; Tensile Strength; Tear Resistance.

References


Wang, W., Zhang, H., Jia, R., Dai, Y., Dong, H., Hou, H., & Guo, Q. (2018). High performance extrusion blown starch/polyvinyl alcohol/clay nanocomposite films. Food Hydrocolloids, 79, 534–543. doi:10.1016/j.foodhyd.2017.12.013.

Rydz, J., Musioł, M., Zawidlak-Węgrzyńska, B., & Sikorska, W. (2018). Present and Future of Biodegradable Polymers for Food Packaging Applications. Biopolymers for Food Design, 431–467. doi:10.1016/b978-0-12-811449-0.00014-1.

Guo, M., Trzcinski, A. P., Stuckey, D. C., & Murphy, R. J. (2011). Anaerobic digestion of starch-polyvinyl alcohol biopolymer packaging: Biodegradability and environmental impact assessment. Bioresource Technology, 102(24), 11137–11146. doi:10.1016/j.biortech.2011.09.061.

Zanela, J., Casagrande, M., Shirai, M. A., De Lima, V. A., & Yamashita, F. (2016). Biodegradable blends of starch/polyvinyl alcohol/glycerol: Multivariate analysis of the mechanical properties. Polimeros, 26(3), 193–196. doi:10.1590/0104-1428.2420.

Tang, X., & Alavi, S. (2011). Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydrate Polymers, 85(1), 7–16. doi:10.1016/j.carbpol.2011.01.030.

Cano, A. I., Cháfer, M., Chiralt, A., & González-Martínez, C. (2015). Physical and microstructural properties of biodegradable films based on pea starch and PVA. Journal of Food Engineering, 167, 59–64. doi:10.1016/j.jfoodeng.2015.06.003.

Kaur, K., Jindal, R., Maiti, M., & Mahajan, S. (2019). Studies on the properties and biodegradability of PVA/Trapa natans starch (N-st) composite films and PVA/N-st-g-poly (EMA) composite films. International Journal of Biological Macromolecules, 123, 826–836. doi:10.1016/j.ijbiomac.2018.11.134.

Patil, S., Bharimalla, A. K., Mahapatra, A., Dhakane-Lad, J., Arputharaj, A., Kumar, M., Raja, A. S. M., & Kambli, N. (2021). Effect of polymer blending on mechanical and barrier properties of starch-polyvinyl alcohol based biodegradable composite films. Food Bioscience, 44, 101352. doi:10.1016/j.fbio.2021.101352.

Zou, G. X., Jin, P. Q., & Xin, L. Z. (2008). Extruded starch/PVA composites: Water resistance, thermal properties, and morphology. Journal of Elastomers and Plastics, 40(4), 303–316. doi:10.1177/0095244307085787.

Kun, D., & Pukánszky, B. (2017). Polymer/lignin blends: Interactions, properties, applications. European Polymer Journal, 93, 618–641. doi:10.1016/j.eurpolymj.2017.04.035.

Su, L., & Fang, G. (2014). Characterization of cross-linked alkaline lignin/poly (vinyl alcohol) film with a formaldehyde cross-linker. BioResources, 9(3), 4477–4488. doi:10.15376/biores.9.3.4477-4488.

Su, L., Xing, Z., Wang, D., Xu, G., Ren, S., & Fang, G. (2013). Mechanical properties research and structural characterization of alkali lignin / poly(vinyl alcohol) reaction films. BioResources, 8(3), 3532–3543. doi:10.15376/biores.8.3.3532-3543.

Zhang, X., Liu, W., Liu, W., & Qiu, X. (2020). High performance PVA/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties. International Journal of Biological Macromolecules, 142, 551–558. doi:10.1016/j.ijbiomac.2019.09.129.

Monteiro, V. A. C., da Silva, K. T., da Silva, L. R. R., Mattos, A. L. A., de Freitas, R. M., Mazzetto, S. E., Lomonaco, D., & Avelino, F. (2021). Selective acid precipitation of Kraft lignin: a tool for tailored biobased additives for enhancing PVA films properties for packaging applications. Reactive and Functional Polymers, 166, 104980. doi:10.1016/j.reactfunctpolym.2021.104980.

Baumberger, S., Lapierre, C., & Monties, B. (1998). Utilization of Pine Kraft Lignin in Starch Composites: Impact of Structural Heterogeneity. Journal of Agricultural and Food Chemistry, 46(6), 2234–2240. doi:10.1021/jf971067h.

Spiridon, I., Teaca, C. A., & Bodirlau, R. (2011). Preparation and characterization of adipic acid-modified starch microparticles/plasticized starch composite films reinforced by lignin. Journal of Materials Science, 46(10), 3241–3251. doi:10.1007/s10853-010-5210-0.

De Miranda, C. S., Ferreira, M. S., Magalhães, M. T., Gonçalves, A. P. B., De Oliveira, J. C., Guimarães, D. H., & José, N. M. (2015). Effect of the glycerol and lignin extracted from piassava fiber in cassava and corn starch films. Materials Research, 18(Suppl 2), 260–264. doi:10.1590/1516-1439.370414.

de Oliveira Begali, D., Ferreira, L. F., de Oliveira, A. C. S., Borges, S. V., de Sena Neto, A. R., de Oliveira, C. R., Yoshida, M. I., & Sarantopoulos, C. I. G. L. (2021). Effect of the incorporation of lignin microparticles on the properties of the thermoplastic starch/pectin blend obtained by extrusion. International Journal of Biological Macromolecules, 180, 262–271. doi:10.1016/j.ijbiomac.2021.03.076.

Wulandari, R. & Ratnawati, R. (2019). Effects of processing temperature and lignin on properties of starch/PVA/lignin film prepared by melt compounding. IOP Conf. Series: Journal of Physics: Conf. Series 1295, 012058. doi:10.1088/1742-6596/1295/1/012058.

Shi, B., Wideman, G., & Wang, J. H. (2012). Improving the processability of water-soluble films based on filled thermoplastic polyvinyl alcohol. International Polymer Processing, 27(2), 231–236. doi:10.3139/217.2517.

Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., da Silva, E. G. P., Portugal, L. A., dos Reis, P. S., Souza, A. S., & dos Santos, W. N. L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179–186. doi:10.1016/j.aca.2007.07.011.

Breig, S. J. M., & Luti, K. J. K. (2021). Response surface methodology: A review on its applications and challenges in microbial cultures. Materials Today: Proceedings, 42, 2277–2284. doi:10.1016/j.matpr.2020.12.316.

Goring, D. A. I. (1965). Thermal softening, adhesive properties, and glass transitions in lignin, hemicellulose and cellulose. In F. Bolam (Ed.), Trans. of the IIIrd Fund. Res. Symp. Cambrigde (Vol. 1, pp. 555–568). FRC. doi:10.15376/frc.1965.1.555.

Reddy, I. A. K., & Ghatak, H. R. (2018). Low-temperature thermal degradation behaviour of non-wood soda lignins and spectroscopic analysis of residues. Journal of Thermal Analysis and Calorimetry, 132(1), 407–423. doi:10.1007/s10973-017-6912-1.

Zhao, J., Xiuwen, W., Hu, J., Liu, Q., Shen, D., & Xiao, R. (2014). Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS. Polymer Degradation and Stability, 108, 133–138. doi:10.1016/j.polymdegradstab.2014.06.006.

Holland, B. J., & Hay, J. N. (2001). The thermal degradation of poly(vinyl alcohol). Polymer, 42(16), 6775–6783. doi:10.1016/S0032-3861(01)00166-5.

Yang, H., Xu, S., Jiang, L., & Dan, Y. (2012). Thermal decomposition behavior of poly (vinyl alcohol) with different hydroxyl content. Journal of Macromolecular Science, Part B: Physics, 51(3), 464–480. doi:10.1080/00222348.2011.597687.

Shie, J. L., Chen, Y. H., Chang, C. Y., Lin, J. P., Lee, D. J., & Wu, C. H. (2002). Thermal pyrolysis of poly(vinyl alcohol) and its major products. Energy and Fuels, 16(1), 109–118. doi:10.1021/ef010082s.

Zhang, X., Golding, J., & Burgar, I. (2002). Thermal decomposition chemistry of starch studied by 13C high-resolution solid-state NMR spectroscopy. Polymer, 43(22), 5791–5796. doi:10.1016/S0032-3861(02)00546-3.

Korbag, I. & Saleh, S. M. (2016). Studies on the formation of intermolecular interactions and structural characterization of polyvinyl alcohol/lignin film. International Journal of Environmental Studies, 73(2), 226–235. doi:10.1080/00207233.2016.1143700.

Nasiri, A., Wearing, J., & Dubé, M. A. (2020). Using lignin to modify starch-based adhesive performance. ChemEngineering, 4, 3. doi:10.3390/chemengineering4010003.

Yang, J., Ching, Y. C., & Chuah, C. H. (2019). Applications of lignocellulosic fibers and lignin in bioplastics: A review. Polymers, 11(5), 1–26. doi:10.3390/polym11050751.

Zhang, Y., Liao, J., Fang, X., Bai, F., Qiao, K., & Wang, L. (2017). Renewable High-Performance Polyurethane Bioplastics Derived from Lignin-Poly(ε-caprolactone). ACS Sustainable Chemistry and Engineering, 5(5), 4276–4284. doi:10.1021/acssuschemeng.7b00288.

Alinejad, M., Henry, C., Nikafshar, S., Gondaliya, A., Bagheri, S., Chen, N., Singh, S. K., Hodge, D. B., & Nejad, M. (2019). Lignin-based polyurethanes: Opportunities for bio-based foams, elastomers, coatings and adhesives. Polymers, 11(7), 1202. doi:10.3390/polym11071202.

Retnowati, D. S., Ratnawati, R., & Purbasari, A. (2015). A biodegradable film from jackfruit (Artocarpus heterophyllus) and durian (Durio zibethinus) seed flours. Scientific Study & Research: Chemistry & Chemical Engineering, Biotechnology, Food Industry, 16(4), 395–404

Tarique, J., Sapuan, S. M., & Khalina, A. (2021). Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Scientific Reports, 11(1), 1–17. doi:10.1038/s41598-021-93094-y.

Kim, D. Y., Lee, J. Bin, Lee, D. Y., & Seo, K. H. (2020). Plasticization effect of poly(lactic acid) in the poly(butylene adipate-co-terephthalate) blown film for tear resistance improvement. Polymers, 12(9), 1–13. doi:10.3390/POLYM12091904.

Jusoh, E. R., Halim Shah Ismail, M., Abdullah, L. C., Robiah, Y., & Wan Abdul Rahman, W. A. (2012). Crude palm oil as a bioadditive in polypropylene blown films. BioResources, 7(1), 859–867. doi:10.15376/biores.7.1.0859-0867.

Kong, R., Wang, J., Cheng, M., Lu, W., Chen, M., Zhang, R., & Wang, X. (2020). Development and characterization of corn starch/PVA active films incorporated with carvacrol nanoemulsions. International Journal of Biological Macromolecules, 164, 1631–1639. doi:10.1016/j.ijbiomac.2020.08.016.

Kochkina, N. E., & Lukin, N. D. (2020). Structure and properties of biodegradable maize starch/chitosan composite films as affected by PVA additions. International Journal of Biological Macromolecules, 157, 377–384. doi:10.1016/j.ijbiomac.2020.04.154.

Domene-López, D., Guillén, M. M., Martin-Gullon, I., García-Quesada, J. C., & Montalbán, M. G. (2018). Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends. Carbohydrate Polymers, 202(June 2018e), 299–305. doi:10.1016/j.carbpol.2018.08.137.

AKDOĞAN, E. (2020). the Effects of High Density Polyethylene Addition To Low Density Polyethylene Polymer on Mechanical, Impact and Physical Properties. European Journal of Technic, 1(2020), 25–37. doi:10.36222/ejt.646693.

Bukovska, P., Burg, P., Masan, V., Zemanek, P., & Dusek, M. (2019). Tensile properties of degradable plastic bag materials. MendelNet Conference (November 6–7), Mendel University in Brno, Czech Republic, 505–510.

Mittal, A., Garg, S., Kohli, D., Maiti, M., Jana, A. K., & Bajpai, S. (2016). Effect of cross linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films. Carbohydrate Polymers, 151, 926–938. doi:10.1016/j.carbpol.2016.06.037.

Tanwar, R., Gupta, V., Kumar, P., Kumar, A., Singh, S., & Gaikwad, K. K. (2021). Development and characterization of PVA-starch incorporated with coconut shell extract and sepiolite clay as an antioxidant film for active food packaging applications. International Journal of Biological Macromolecules, 185, 451–461. doi:10.1016/j.ijbiomac.2021.06.179.

Ray, R., Narayan Das, S., & Das, A. (2019). Mechanical, thermal, moisture absorption and biodegradation behaviour of date palm leaf reinforced PVA/starch hybrid composites. Materials Today: Proceedings, 41, 376–381. doi:10.1016/j.matpr.2020.09.564.

Zhou, P., Luo, Y., Lv, Z., Sun, X., Tian, Y., & Zhang, X. (2021). Melt-processed poly (vinyl alcohol)/corn starch/nanocellulose composites with improved mechanical properties. International Journal of Biological Macromolecules, 183, 1903–1910. doi:10.1016/j.ijbiomac.2021.06.011.

Hong, S., Wu, Y., Wang, B., Zheng, Y., Gao, W., & Li, G. (2014). High-velocity oxygen-fuel spray parameter optimization of nanostructured WC-10Co-4Cr coatings and sliding wear behavior of the optimized coating. Materials and Design, 55, 286–291. doi:10.1016/j.matdes.2013.10.002.

Ardestani, N. S., & Amani, M. (2021). Production of Anthraquinone Violet 3RN nanoparticles via the GAS process: Optimization of the process parameters using Box-Behnken design. Dyes and Pigments, 193, 109471. doi:10.1016/j.dyepig.2021.109471.

Brebu, M., & Vasile, C. (2010). Thermal degradation of lignin - A review. Cellulose Chemistry and Technology, 44(9), 353–363.

Ujianto, O., Marzuki, & Radini, F. A. (2016). Natural rubber based compatibilizer prepared in twin screw extruder: Optimization percentage of grafted maleic anhydride using experimental design. Materials Science Forum, 864, 13–17. doi:10.4028/www.scientific.net/MSF.864.13.


Full Text: PDF

DOI: 10.28991/ESJ-2022-06-02-03

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Ratnawati Ratnawati, Retno Wulandari, Andri Cahyo Kumoro, Hadiyanto Hadiyanto