Expected Values of Molecular Descriptors in Random Polyphenyl Chains
Abstract
Doi: 10.28991/ESJ-2022-06-01-012
Full Text: PDF
Keywords
References
Huang, G., Kuang, M., & Deng, H. (2015). The expected values of Kirchhoff indices in the random polyphenyl and spiro chains. Ars Mathematica Contemporanea, 9(2), 207–217. doi:10.26493/1855-3974.458.7b0.
Fang, X., You, L., & Liu, H. (2021). The expected values of Sombor indices in random hexagonal chains, phenylene chains and Sombor indices of some chemical graphs. International Journal of Quantum Chemistry, 121(17). doi:10.1002/qua.26740.
Reti, T., Dosli, T., & Ali, A. (2021). On the Sombor index of graphs. Contributions to Mathematics, 3, 11–18. doi:10.47443/cm.2021.0006.
Ulker, A., Gursoy, A., Gursoy, N. K., & Gutman, I. (2021). Relating graph energy and Sombor index. In Discrete Mathematics Letters (Vol. 8, pp. 6–9). doi:10.47443/dml.2021.0085.
Bonchev, D. (1983). Information theoretic indices for characterization of chemical structures (No. 5). Research Studies Press.
Deng, H. (2012). Wiener indices of spiro and polyphenyl hexagonal chains. Mathematical and Computer Modelling, 55(3–4), 634–644. doi:10.1016/j.mcm.2011.08.037.
Wu, T., & Lü, H. (2019). Hyper-Wiener indices of polyphenyl chains and polyphenyl spiders. In Open Mathematics, 17(1), , 668–676. doi:10.1515/math-2019-0053.
Redžepović, I. (2021). Chemical applicability of Sombor indices. Journal of the Serbian Chemical Society, 86(5), 445–457. doi:10.2298/JSC201215006R.
Deng, H., & Tang, Z. (2014). Kirchhoff indices of spiro and polyphenyl hexagonal chains. Utilitas Mathematica, 95, 113-128.
Došlic, T., & Litz, M. S. (2012). Matchings and independent sets in polyphenylene chains. Match-Communications in Mathematical and Computer Chemistry, 67(2), 313.
Yang, Y., Liu, H., Wang, H., & Sun, S. (2017). On Spiro and polyphenyl hexagonal chains with respect to the number of BC-subtrees. International Journal of Computer Mathematics, 94(4), 774–799. doi:10.1080/00207160.2016.1148811.
Raza, Z. (2020). The Harmonic and Second Zagreb Indices in Random Polyphenyl and Spiro Chains. Polycyclic Aromatic Compounds. doi:10.1080/10406638.2020.1749089.
Wang, G., Li, X., & Li, C. (2014). Polyphenyl Systems with Extremal Hyper-Wiener Indices. Journal of Computational and Theoretical Nanoscience, 11(4), 1129-1132. https://doi.org/10.1166/jctn.2014.3472.
Raza, Z. (2020). The expected values of arithmetic bond connectivity and geometric indices in random phenylene chains. Heliyon, 6(7). doi:10.1016/j.heliyon.2020.e04479.
Bai, Y., Zhao, B., & Zhao, P. (2009). Extremal merrifield-simmons index and Hosoya index of polyphenyl chains. Match, 62(3), 649–656.
Chen, A., & Zhang, F. (2009). Wiener index and perfect matchings in random phenylene chains. Match, 61(3), 623–630.
Raza, Z.; Imran, M. (2021). Expected Values of Some Molecular Descriptors in Random Cyclooctane Chains. Symmetry, 13(11), 2197. doi:10.3390/sym13112197.
Bian, H., & Zhang, F. (2009). Tree-like polyphenyl systems with extremal Wiener indices. Match, 61(3), 631–642.
Bureš, M., Pekárek, V., & Ocelka, T. (2008). Thermochemical properties and relative stability of polychlorinated biphenyls. Environmental Toxicology and Pharmacology, 25(2), 148–155. doi:10.1016/j.etap.2007.10.010.
Yang, Y., Liu, H., Wang, H., & Fu, H. (2015). Subtrees of spiro and polyphenyl hexagonal chains. Applied Mathematics and Computation, 268, 547–560. doi:10.1016/j.amc.2015.06.094.
DOI: 10.28991/ESJ-2022-06-01-012
Refbacks
- There are currently no refbacks.