A Review on Multilevel Inverter Topologies

Afshin Balal, Saleh Dinkhah, Farzad Shahabi, Miguel Herrera, Yao Lung Chuang


In this paper, a brief review of the multilevel inverter (MLI) topologies is presented. The two-level Voltage Source Inverter (VSI) requires a suitable filter to produce sinusoidal output waveforms. The high-frequency switching and the PWM method are used to create output waveforms with the least amount of ripples. Due to the switching losses, the traditional two-level inverter has some restrictions when running at high frequencies. For addressing this problem, multilevel inverters (MLI) with lower switching frequencies and reduced total harmonic distortion (THD) are employed, eliminating the requirement for filters and bulky transformers. Furthermore, improved performance at the high switching frequency, higher power quality (near to pure sinusoidal), and fewer switching losses are just a few of the benefits of MLI inverters. However, each switch has to have its own gate driver for implementing MLI, which adds to the system's complexity. Therefore, reducing the number of switches of MLI is necessary. This paper presents a review of some of the different current topologies using a lower number of switches.


Doi: 10.28991/ESJ-2022-06-01-014

Full Text: PDF


Traditional Two-Level Inverters; Multilevel Inverter (MLI); High Power Application.


Kjaer, S. B., Pedersen, J. K., & Blaabjerg, F. (2005). A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Transactions on Industry Applications, 41(5), 1292–1306. doi:10.1109/TIA.2005.853371.

Vázquez, N., & López, J. V. Inverters. (2008). In Power Electronics Handbook (pp. 289–338). Elsevier.

Malinowski, M., Gopakumar, K., Rodriguez, J., & Perez, M. A. (2009). A survey on cascaded multilevel inverters. IEEE Transactions on Industrial Electronics, 57(7), 2197–2206. doi:10.1109/TIE.2009.2030767.

Rodriguez, J., Lai, J.-S., & Peng, F. Z. (2002). Multilevel inverters: a survey of topologies, controls, and applications. IEEE Transactions on Industrial Electronics, 49(4), 724–738.

Mirafzal, B., & Adib, A. (2020). On Grid-Interactive Smart Inverters: Features and Advancements. IEEE Access, 8, 160526–160536. doi:10.1109/ACCESS.2020.3020965.

Lasseter, R. H., Chen, Z., & Pattabiraman, D. (2020). Grid-Forming Inverters: A Critical Asset for the Power Grid. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(2), 925–935. doi:10.1109/JESTPE.2019.2959271.

Aghazadeh, A., Davari, M., Nafisi, H., & Blaabjerg, F. (2019). Grid integration of a dual two-level voltage-source inverter considering grid impedance and phase-locked loop. IEEE Journal of Emerging and Selected Topics in Power Electronics.

Aghazadeh, A., Khodabakhshi-Javinani, N., Nafisi, H., Davari, M., & Pouresmaeil, E. (2019). Adapted near-state PWM for dual two-level inverters in order to reduce common-mode voltage and switching losses. IET Power Electronics, 12(4), 676–685. doi:10.1049/iet-pel.2018.5268.

Aghazadeh, A., Jafari, M., Khodabakhshi-Javinani, N., Nafisi, H., & Namvar, H. J. (2018). Introduction and advantage of space opposite vectors modulation utilized in dual two-level inverters with isolated DC sources. IEEE Transactions on Industrial Electronics, 66(10), 7581-7592. https://doi.org/10.1109/TIE.2018.2880720

Gupta, K. K., & Bhatnagar, P. (2017). Multilevel inverters: Conventional and emerging topologies and their control. In Multilevel Inverters: Conventional and Emerging Topologies and Their Control. Academic Press. doi:10.1016/C2016-0-03360-0.

Ponraj, R. P., & Sigamani, T. (2021). A novel design and performance improvement of symmetric multilevel inverter with reduced switches using genetic algorithm. Soft Computing, 25(6), 4597–4607. doi:10.1007/s00500-020-05466-7.

Ali, A. N., Jeyabharath, R., & Udayakumar, M. D. (2016). Cascaded Multilevel Inverters for Reduce Harmonic Distortions in Solar PV Applications. Asian Journal of Research in Social Sciences and Humanities, 6(11), 703. doi:10.5958/2249-7315.2016.01223.5.

Kouro, S., Rebolledo, J., & Rodríguez, J. (2007). Reduced switching-frequency-modulation algorithm for high-power multilevel inverters. IEEE Transactions on Industrial Electronics, 54(5), 2894–2901. doi:10.1109/TIE.2007.905968.

Gautam, S. P., Sahu, L. K., & Gupta, S. (2016). Reduction in number of devices for symmetrical and asymmetrical multilevel inverters. IET Power Electronics, 9(4), 698–709. doi:10.1049/iet-pel.2015.0176.

Nguyen, N. V., Nguyen, T. K. T., & Lee, H. H. (2014). A reduced switching loss PWM strategy to eliminate common-mode voltage in multilevel inverters. IEEE Transactions on Power Electronics, 30(10), 5425-5438. https://doi.org/10.1109/TPEL.2014.2377152.

Chowdhury, M. R., Rahman, M. A., Islam, M. R., & Mahfuz-Ur-Rahman, A. M. (2021). A New Modulation Technique to Improve the Power Loss Division Performance of the Multilevel Inverters. IEEE Transactions on Industrial Electronics, 68(8), 6828–6839. doi:10.1109/TIE.2020.3001846.

Keddar, M., Doumbia, M. L., Krachai, M. Della, Belmokhtar, K., & Midoun, A. H. (2019). Interconnection performance analysis of single phase neural network based NPC and CHB multilevel inverters for grid-connected PV systems. International Journal of Renewable Energy Research, 9(3), 1451–1461.

Hossam-Eldin, A. A., Negm, E., Elgamal, M. S., & AboRas, K. M. (2020). Operation of grid-connected DFIG using SPWM- and THIPWM-based diode-clamped multilevel inverters. IET Generation, Transmission and Distribution, 14(8), 1412–1419. doi:10.1049/iet-gtd.2019.0248.

Wu, B. and M. Narimani, (2016). Diode-Clamped Multilevel Inverters in High-Power Converters and AC Drives, 143–183. doi:10.1002/9781119156079.ch8.

Choudhury, S., Nayak, S., Dash, T. P., & Rout, P. K. (2018). A comparative analysis of five level diode clamped and cascaded H-bridge multilevel inverter for harmonics reduction. In International Conference on Technologies for Smart City Energy Security and Power: Smart Solutions for Smart Cities, ICSESP 2018 - Proceedings (Vols. 2018-January), 1–6. IEEE. doi:10.1109/ICSESP.2018.8376690.

Narendra Rao, P., & Nakka, J. (2019). A Novel Hybrid Multilevel PWM Technique for Power Rating Enhancement in Improved Hybrid Cascaded Diode Clamped Multilevel Inverter. Electric Power Components and Systems, 47(11–12), 1132–1143. doi:10.1080/15325008.2019.1659455.

Shi, S., Wang, X., Zheng, S., Zhang, Y., & Lu, D. (2018). A new diode-clamped multilevel inverter with balance voltages of DC capacitors. IEEE Transactions on Energy Conversion, 33(4), 2220–2228. doi:10.1109/TEC.2018.2863561.

Hassan, P. D. R., & Shyaa, S. S. (2021). Simulink Implementation of Voltage Stability Improvements Using STATCOM based 5-level Diode Clamped Converter. IOP Conference Series: Materials Science and Engineering, 1105(1), 012009. doi:10.1088/1757-899x/1105/1/012009.

Adam, G. P., Finney, S. J., Massoud, A. M., & Williams, B. W. (2008). Capacitor balance issues of the diode-clamped multilevel inverter operated in a quasi-two-state mode. IEEE Transactions on Industrial Electronics, 55(8), 3088–3099. doi:10.1109/TIE.2008.922607.

Von Bloh, J., & De Doncker, R. W. (2002). Design rules for diode-clamped multilevel inverters used in medium-voltage applications. International Power Electronics Congress - CIEP, 2002-January, 165–170. doi:10.1109/CIEP.2002.1216654.

Escalante, M. F., Vannier, J. C., & Arzandé, A. (2002). Flying capacitor multilevel inverters and DTC motor drive applications. IEEE Transactions on Industrial Electronics, 49(4), 809–815. doi:10.1109/TIE.2002.801231.

Humayun, M., Khan, M. M., Hassan, M. U., & Zhang, W. (2021). Analysis of hybrid switches symmetric flying capacitor multilevel inverter based STATCOM. International Journal of Electrical Power and Energy Systems, 131, 107054. doi:10.1016/j.ijepes.2021.107054.

Coday, S., Barchowsky, A., & Pilawa-Podgurski, R. C. N. (2021). A 10-level gan-based flying capacitor multilevel boost converter for radiation-hardened operation in space applications. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2798–2803. doi:10.1109/APEC42165.2021.9487143.

Humayun, M., Khan, M. M., Muhammad, A., Xu, J., & Zhang, W. (2020). Evaluation of symmetric flying capacitor multilevel inverter for grid-connected application. International Journal of Electrical Power and Energy Systems, 115, 105430. doi:10.1016/j.ijepes.2019.105430.

Barth, C. B., Assem, P., Foulkes, T., Chung, W. H., Modeer, T., Lei, Y., & Pilawa-Podgurski, R. C. (2019). Design and control of a GaN-based, 13-level, flying capacitor multilevel inverter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(3), 2179-2191. https://doi.org/10.1109/JESTPE.2019.2956166.

Abhilash, T., Annamalai, K., & Tirumala, S. V. (2019). A Seven-Level VSI with a Front-End Cascaded Three-Level Inverter and Flying-Capacitor-Fed H-Bridge. IEEE Transactions on Industry Applications, 55(6), 6073–6088. doi:10.1109/TIA.2019.2933378.

Amini, J., & Moallem, M. (2017). A Fault-Diagnosis and Fault-Tolerant Control Scheme for Flying Capacitor Multilevel Inverters. IEEE Transactions on Industrial Electronics, 64(3), 1818–1826. doi:10.1109/TIE.2016.2624722.

Porselvi, T., & Muthu, R. (2011). Comparison of cascaded H-bridge, neutral point clamped and flying capacitor multilevel inverters using multicarrier PWM. Proceedings - 2011 Annual IEEE India Conference: Engineering Sustainable Solutions, INDICON-2011. doi:10.1109/INDCON.2011.6139534.

Adam, G. P., Anaya-Lara, O., Burt, G., Finney, S. J., & Williams, B. W. (2009). Comparison between flying capacitor and modular multilevel inverters. IECON Proceedings (Industrial Electronics Conference), 271–276. doi:10.1109/IECON.2009.5414934.

Wu, B., & Narimani, M. (2017). Cascaded H‐bridge multilevel inverters.

Chithra, M., & Dasan, S. G. B. (2011). Analysis of cascaded H bridge multilevel inverters with photovoltaic arrays. 2011 International Conference on Emerging Trends in Electrical and Computer Technology, ICETECT 2011, 442–447. doi:10.1109/ICETECT.2011.5760157.

Odeh, C. I., Lewicki, A., & Morawiec, M. (2021). A Single-Carrier-Based Pulse-Width Modulation Template for Cascaded H-Bridge Multilevel Inverters. IEEE Access, 9, 42182–42191. doi:10.1109/ACCESS.2021.3065743.

Memon, M. A., Siddique, M. D., Saad, M., & Mubin, M. (2021). Asynchronous Particle Swarm Optimization-Genetic Algorithm (APSO-GA) based Selective Harmonic Elimination in a Cascaded H-Bridge Multilevel Inverter. IEEE Transactions on Industrial Electronics. doi:10.1109/TIE.2021.3060645.

Lee, E. J., Kim, S. M., & Lee, K. B. (2020). Modified phase-shifted PWM scheme for reliability improvement in cascaded H-bridge multilevel inverters. IEEE Access, 8, 78130–78139. doi:10.1109/ACCESS.2020.2989694.

Maurya, S., Mishra, D., Singh, K., Mishra, A. K., & Pandey, Y. (2019). An Efficient Technique to reduce Total Harmonics Distortion in Cascaded H- Bridge Multilevel Inverter. Proceedings of 2019 3rd IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2019. doi:10.1109/ICECCT.2019.8869424.

Bhatnagar, P., Agrawal, R., & Gupta, K. K. (2019). Reduced device count version of single-stage switched-capacitor module for cascaded multilevel inverters. IET Power Electronics, 12(5), 1079–1086. doi:10.1049/iet-pel.2018.6017.

Khoucha, F., Ales, A., Khoudiri, A., Marouani, K., Benbouzid, M. E. H., & Kheloui, A. (2010). A 7-level single DC source cascaded H-bridge multilevel inverters control using hybrid modulation. 19th International Conference on Electrical Machines, ICEM 2010. doi:10.1109/ICELMACH.2010.5608179.

Lee, E. J., & Lee, K. B. (2021). Performance improvement of cascaded H-bridge multilevel inverters with modified modulation scheme. Journal of Power Electronics, 21(3), 541–552. doi:10.1007/s43236-020-00200-w.

Tackie, S. N., & Babaei, E. (2020). Modified topology for three-phase multilevel inverters based on a developed H-bridge inverter. Electronics, 9(11), 1848. https://doi.org/10.3390/electronics9111848.

Chamarthi, P. K., Al-Durra, A., El-Fouly, T. H. M., & Jaafari, K. Al. (2021). A Novel Three-Phase Transformerless Cascaded Multilevel Inverter Topology for Grid-Connected Solar PV Applications. IEEE Transactions on Industry Applications, 57(3), 2285–2297. doi:10.1109/TIA.2021.3057312.

Samanbakhsh, R., Ibanez, F. M., Koohi, P., & Martin, F. (2021). A New Asymmetric Cascaded Multilevel Converter Topology with Reduced Voltage Stress and Number of Switches. IEEE Access, 9, 92276–92287. doi:10.1109/ACCESS.2021.3092691.

Bahravar, S., Babaei, E., & Hosseini, S. H. (2012). New cascaded multilevel inverter topology with reduced variety of magnitudes of dc voltage sources. India International Conference on Power Electronics, IICPE. doi:10.1109/IICPE.2012.6450408.

Grigoletto, F. B. (2021). Multilevel Common-Ground Transformerless Inverter for Photovoltaic Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(1), 831–842. doi:10.1109/JESTPE.2020.2979158.

Odeh, C. I., Obe, E. S., & Ojo, O. (2016). Topology for cascaded multilevel inverter. IET Power Electronics, 9(5), 921–929. doi:10.1049/iet-pel.2015.0375.

Lee, S. S., Lim, C. S., Siwakoti, Y. P., & Lee, K. B. (2020). Dual-T-Type Five-Level Cascaded Multilevel Inverter with Double Voltage Boosting Gain. IEEE Transactions on Power Electronics, 35(9), 9522–9529. doi:10.1109/TPEL.2020.2973666.

Samsami, H., Taheri, A., & Samanbakhsh, R. (2017). New bidirectional multilevel inverter topology with staircase cascading for symmetric and asymmetric structures. IET Power Electronics, 10(11), 1315–1323. doi:10.1049/iet-pel.2016.0956.

Zeng, J., Lin, W., Cen, D., & Liu, J. (2020). Novel k-Type multilevel inverter with reduced components and self-balance. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(4), 4343–4354. doi:10.1109/JESTPE.2019.2939562.

Agrawal, R., & Jain, S. (2017). Multilevel inverter for interfacing renewable energy sources with low/medium- and highvoltage grids. IET Renewable Power Generation, 11(14), 1822–1831. doi:10.1049/iet-rpg.2016.1034.

Dekka, A., Ramezani, A., Ouni, S., & Narimani, M. (2020). A New Five-Level Voltage Source Inverter: Modulation and Control. IEEE Transactions on Industry Applications, 56(5), 5553–5564. doi:10.1109/TIA.2020.3000712.

Oskuee, M. R. J., Karimi, M., Ravadanegh, S. N., & Gharehpetian, G. B. (2015). An Innovative Scheme of Symmetric Multilevel Voltage Source Inverter with Lower Number of Circuit Devices. IEEE Transactions on Industrial Electronics, 62(11), 6965–6973. doi:10.1109/TIE.2015.2438059.

Lee, S. S., Lim, C. S., & Lee, K. B. (2019). Novel active-neutral-point-clamped inverters with improved voltage-boosting capability. IEEE Transactions on Power Electronics, 35(6), 5978-5986. doi:10.1109/TPEL.2019.2951382.

Khoshkbar Sadigh, A., Abarzadeh, M., Corzine, K. A., & Dargahi, V. (2015). A New Breed of Optimized Symmetrical and Asymmetrical Cascaded Multilevel Power Converters. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(4), 1160–1170. doi:10.1109/JESTPE.2015.2459011.

Meraj, S. T., Hasan, K., & Masaoud, A. (2020). A Novel Configuration of Cross-Switched T-Type (CT-Type) Multilevel Inverter. IEEE Transactions on Power Electronics, 35(4), 3688–3696. doi:10.1109/TPEL.2019.2935612.

Jain, S., & Sonti, V. (2016). A highly efficient and reliable inverter configuration based cascaded multilevel inverter for PV systems. IEEE transactions on industrial electronics, 64(4), 2865-2875. doi:10.1109/TIE.2016.2633537.

Grigoletto, F. B. (2020). Five-Level Transformerless Inverter for Single-Phase Solar Photovoltaic Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(4), 3411–3422. doi:10.1109/JESTPE.2019.2891937.

Hsieh, C. H., Liang, T. J., Chen, S. M., & Tsai, S. W. (2016). Design and Implementation of a Novel Multilevel DC-AC Inverter. IEEE Transactions on Industry Applications, 52(3), 2436–2443. doi:10.1109/TIA.2016.2527622.

Mondol, M. H., Tür, M. R., Biswas, S. P., Hosain, M. K., Shuvo, S., & Hossain, E. (2020). Compact Three Phase Multilevel Inverter for Low and Medium Power Photovoltaic Systems. IEEE Access, 8, 60824–60837. doi:10.1109/ACCESS.2020.2983131.

Kadam, A., & Shukla, A. (2017). A Multilevel Transformerless Inverter Employing Ground Connection between PV Negative Terminal and Grid Neutral Point. IEEE Transactions on Industrial Electronics, 64(11), 8897–8907. doi:10.1109/TIE.2017.2696460.

Siddique, M. D., Mekhilef, S., Mekhilef, S., Shah, N. M., Ali, J. S. M., & Blaabjerg, F. (2020). A new switched capacitor 7L inverter with triple voltage gain and low voltage stress. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(7), 1294–1298. doi:10.1109/TCSII.2019.2932480.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-01-014


  • There are currently no refbacks.

Copyright (c) 2022 afshin balal