Classification of Epileptic and Non-Epileptic Electroencephalogram (EEG) Signals Using Fractal Analysis and Support Vector Regression

G. Buchanna, P. Premchand, A. Govardhan


Seizures are a common symptom of this neurological condition, which is caused by the discharge of brain nerve cells at an excessively fast rate. Chaos, nonlinearity, and other nonlinearities are common features of scalp and intracranial Electroencephalogram (EEG) data recorded in clinics. EEG signals that aren't immediately evident are challenging to categories because of their complexity. The Gradient Boost Decision Tree (GBDT) classifier was used to classify the majority of the EEG signal segments automatically. According to this study, the Hurst exponent, in combination with AFA, is an efficient way to identify epileptic signals. As with any fractal analysis approach, there are problems and factors to keep in mind, such as identifying whether or not linear scaling areas are present. These signals were classified as either epileptic or non-epileptic by using a combination of GBDT and a Support Vector Regression (SVR). The combined method's identification accuracy was 98.23%. This study sheds light on the effectiveness of AFA feature extraction and GBDT classifiers in EEG classification. The findings can be utilized to develop theoretical guidance for the clinical identification and prediction of epileptic EEG signals.


Doi: 10.28991/ESJ-2022-06-01-011

Full Text: PDF


Hurst Exponent; Adaptive Fractal Analysis; EEG; Support Vector Regression; Gradient Boosting Decision Trees.


Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6). doi:10.1103/physreve.64.061907.

Ott, E., Sauer, T., & Yorke, J. A. (1994). Coping with chaos. Wiley.

Rombouts, S. A. R. B., Keunen, R. W. M., & Stam, C. J. (1995). Investigation of nonlinear structure in multichannel EEG. Physics Letters A, 202(5–6), 352–358. doi:10.1016/0375-9601(95)00335-Z.

Lopes Da Silva, F. H., Pijn, J. P., Velis, D., & Nijssen, P. C. G. (1997). Alpha rhythms: Noise, dynamics and models. International Journal of Psychophysiology, 26(1–3), 237–249. doi:10.1016/S0167-8760(97)00767-8.

Pritchard, W. S., Duke, D. W., & Krieble, K. K. (1995). Dimensional analysis of resting human EEG II: Surrogate‐data testing indicates nonlinearity but not low‐dimensional chaos. Psychophysiology, 32(5), 486–491. doi:10.1111/j.1469-8986.1995.tb02100.x.

Pezard, L., Jech, R., & Růžička, E. (2001). Investigation of non-linear properties of multichannel EEG in the early stages of Parkinson’s disease. Clinical Neurophysiology, 112(1), 38–45. doi:10.1016/S1388-2457(00)00512-5.

Nandrino, J. L., Pezard, L., Martinerie, J., El Massioui, F., Renault, B., Jouvent, R., Allilaire, J. F., & Widlöcher, D. (1994). Decrease of complexity in EEG as a symptom of depression. NeuroReport, 5(4), 528–530. doi:10.1097/00001756-199401120-00042

Jeong, J., Chae, J. H., Kim, S. Y., & Han, S. H. (2001). Nonlinear dynamic analysis of the EEG in patients with Alzheimer’s disease and vascular dementia. Journal of Clinical Neurophysiology, 18(1), 58–67. doi:10.1097/00004691-200101000-00010.

Soong, A. C. K., & Stuart, C. I. J. M. (1989). Evidence of chaotic dynamics underlying the human alpha-rhythm electroencephalogram. Biological Cybernetics, 62(1), 55–62. doi:10.1007/BF00217660.

Stam, C. J., Pijn, J. P. M., Suffczynski, P., & Lopes Da Silva, F. H. (1999). Dynamics of the human alpha rhythm: Evidence for non-linearity? Clinical Neurophysiology, 110(10), 1801–1813. doi:10.1016/S1388-2457(99)00099-1.

Jing, H., & Takigawa, M. (2000). Topographic analysis of dimension estimates of EEG and filtered rhythms in epileptic patients with complex partial seizures. Biological Cybernetics, 83(5), 391–397. doi:10.1007/s004220000183.

Andrzejak, R. G., Widman, G., Lehnertz, K., Rieke, C., David, P., & Elger, C. E. (2001). The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy. Epilepsy Research, 44(2–3), 129–140. doi:10.1016/S0920-1211(01)00195-4.

Iasemidis, L. D., Pardalos, P., Sackellares, J. C., & Shiau, D. S. (2001). Quadratic Binary Programming and Dynamical System Approach to Determine the Predictability of Epileptic Seizures. Journal of Combinatorial Optimization, 5(1), 9–26. doi:10.1023/A:1009877331765.

Theiler, J. (1994). On the evidence for low-dimensional chaos in an epileptic electroencephalogram. Physics Letters A, 196(1–2), 335–341. doi:10.1016/0375-9601(94)91096-0.

Babloyantz, A., & Destexhe, A. (1986). Low-dimensional chaos in an instance of epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 83(10), 3513–3517. doi:10.1073/pnas.83.10.3513.

Mormann, F., Lehnertz, K., David, P., & E. Elger, C. (2000). Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D: Nonlinear Phenomena, 144(3), 358–369. doi:10.1016/S0167-2789(00)00087-7.

Frank, G. W., Lookman, T., Nerenberg, M. A. H., Essex, C., Lemieux, J., & Blume, W. (1990). Chaotic time series analyses of epileptic seizures. Physica D: Nonlinear Phenomena, 46(3), 427–438. doi:10.1016/0167-2789(90)90103-V.

Lehnertz, K., & Elger, C. E. (1998). Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity. Physical Review Letters, 80(22), 5019–5022. doi:10.1103/PhysRevLett.80.5019.

Le Van Quyen, M., Martinerie, J., Navarro, V., Boon, P., D'Havé, M., Adam, C., ... & Baulac, M. (2001). Anticipation of epileptic seizures from standard EEG recordings. The Lancet, 357(9251), 183-188.

Martinerie, J., Adam, C., Le Van Quyen, M., Baulac, M., Clemenceau, S., Renault, B., & Varela, F. J. (1998). Epileptic seizures can be anticipated by non-linear analysis. Nature Medicine, 4(10), 1173–1176. doi:10.1038/2667.

Lehnertz, K., Arnhold, J., Grassberger, P., & Elger, C. E. (2000). Chaos in Brain? In Proceedings of the Workshop on chaos in Brain, World Scientific. World Scientific.

Iasemidis, L. D., Chris Sackellares, J., Zaveri, H. P., & Williams, W. J. (1990). Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures. Brain Topography, 2(3), 187–201. doi:10.1007/BF01140588.

Theiler, J., & Rapp, P. E. (1996). Re-examination of the evidence for low-dimensional, nonlinear structure in the human electroencephalogram. Electroencephalography and Clinical Neurophysiology, 98(3), 213–222. doi:10.1016/0013-4694(95)00240-5.

Stam, C. J., Van Woerkom, T. C. A. M., & Pritchard, W. S. (1996). Use of non-linear EEF measures to characterize EEG changes during mental activity. Electroencephalography and Clinical Neurophysiology, 99(3), 214–224. doi:10.1016/0013-4694(96)95638-2.

Rapp, P. E., Bashore, T. R., Martinerie, J. M., Albano, A. M., Zimmerman, I. D., & Mees, A. I. (1989). Dynamics of brain electrical activity. Brain Topography, 2(1–2), 99–118. doi:10.1007/BF01128848.

Jelles, B., Van Birgelen, J. H., Slaets, J. P. J., Hekster, R. E. M., Jonkman, E. J., & Stam, C. J. (1999). Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls. Clinical Neurophysiology, 110(7), 1159–1167. doi:10.1016/S1388-2457(99)00013-9.

Stam, C. J., Van Woerkom, T. C. A. M., & Keunen, R. W. M. (1997). Non-linear analysis of the electroencephalogram in Creutzfeldt-Jakob disease. Biological Cybernetics, 77(4), 247–256. doi:10.1007/s004220050385.

Nandrino, J. L., Pezard, L., Martinerie, J., El Massioui, F., Renault, B., Jouvent, R., Allilaire, J. F., & Widlöcher, D. (1994). Decrease of complexity in EEG as a symptom of depression. NeuroReport, 5(4), 528–530. doi:10.1097/00001756-199401120-00042.

Pijn, J. P. M., Veils, D. N., Van Der Heyden, M. J., DeGoede, J., Van Veelen, C. W. M., & Lopes Da Silva, F. H. (1997). Nonlinear dynamics of epileptic seizures on basis of intracranial EEG recordings. Brain Topography, 9(4), 249–270. doi:10.1007/BF01464480.

Mormann, F., Lehnertz, K., David, P., & E. Elger, C. (2000). Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D: Nonlinear Phenomena, 144(3), 358–369. doi:10.1016/S0167-2789(00)00087-7.

Gautama, T., Mandic, D. P., & Van Hulle, M. M. (2003). Indications of nonlinear structures in brain electrical activity. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 67(4), 5. doi:10.1103/PhysRevE.67.046204.

Nigam, V. P., & Graupe, D. (2004). A neural-network-based detection of epilepsy. Neurological Research, 26(1), 55–60. doi:10.1179/016164104773026534.

Güler, I., & Übeyli, E. D. (2005). Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. Journal of Neuroscience Methods, 148(2), 113–121. doi:10.1016/j.jneumeth.2005.04.013.

Subasi, A. (2007). EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, 32(4), 1084–1093. doi:10.1016/j.eswa.2006.02.005.

Adeli, H., Ghosh-Dastidar, S., & Dadmehr, N. (2007). A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Transactions on Biomedical Engineering, 54(2), 205–211. doi:10.1109/TBME.2006.886855.

Guo, L., Rivero, D., Dorado, J., Rabuñal, J. R., & Pazos, A. (2010). Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. Journal of Neuroscience Methods, 191(1), 101–109. doi:10.1016/j.jneumeth.2010.05.020.

Srinivasan, V., Eswaran, C., & Sriraam, A. N. (2005). Artificial neural network based epileptic detection using time-domain and frequency-domain features. Journal of Medical Systems, 29(6), 647–660. doi:10.1007/s10916-005-6133-1.

Harikrishnan, K. P., Misra, R., Ambika, G., & Kembhavi, A. K. (2006). A non-subjective approach to the GP algorithm for analysing noisy time series. Physica D: Nonlinear Phenomena, 215(2), 137–145. doi:10.1016/j.physd.2006.01.027.

Kannathal, N., Acharya, U. R., Lim, C. M., & Sadasivan, P. K. (2005). Characterization of EEG - A comparative study. Computer Methods and Programs in Biomedicine, 80(1), 17–23. doi:10.1016/j.cmpb.2005.06.005.

Kannathal, N., Choo, M. L., Acharya, U. R., & Sadasivan, P. K. (2005). Entropies for detection of epilepsy in EEG. Computer Methods and Programs in Biomedicine, 80(3), 187–194. doi:10.1016/j.cmpb.2005.06.012.

Srinivasan, V., Eswaran, C., & Sriraam, N. (2007). Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Transactions on Information Technology in Biomedicine, 11(3), 288–295. doi:10.1109/TITB.2006.884369.

Nicolaou, N., & Georgiou, J. (2012). Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines. Expert Systems with Applications, 39(1), 202–209. doi:10.1016/j.eswa.2011.07.008.

Übeyli, E. D., & Güler, I. (2007). Features extracted by eigenvector methods for detecting variability of EEG signals. Pattern Recognition Letters, 28(5), 592–603. doi:10.1016/j.patrec.2006.10.004.

Polat, K., & Güneş, S. (2008). Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals. Expert Systems with Applications, 34(3), 2039–2048. doi:10.1016/j.eswa.2007.02.009.

Kumar, Y., Dewal, M. L., & Anand, R. S. (2014). Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal, Image and Video Processing, 8(7), 1323–1334. doi:10.1007/s11760-012-0362-9.

Subasi, A., & Gursoy, M. I. (2010). EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Systems with Applications, 37(12), 8659–8666. doi:10.1016/j.eswa.2010.06.065.

Orhan, U., Hekim, M., & Ozer, M. (2011). EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Systems with Applications, 38(10), 13475–13481. doi:10.1016/j.eswa.2011.04.149.

Wang, L., Xue, W., Li, Y., Luo, M., Huang, J., Cui, W., & Huang, C. (2017). Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy, 19(6). doi:10.3390/e19060222.

Gajic, D., Djurovic, Z., Gligorijevic, J., Di Gennaro, S., & Savic-Gajic, I. (2015). Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis. Frontiers in Computational Neuroscience, 9(MAR). doi:10.3389/fncom.2015.00038.

Wang, D., Miao, D., & Xie, C. (2011). Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Systems with Applications, 38(11), 14314–14320. doi:10.1016/j.eswa.2011.05.096.

Fergus, P., Hignett, D., Hussain, A., Al-Jumeily, D., & Abdel-Aziz, K. (2015). Automatic epileptic seizure detection using scalp EEG and advanced artificial intelligence techniques. BioMed Research International, 2015. doi:10.1155/2015/986736.

Hsu, K. C., & Yu, S. N. (2010). Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm. Computers in Biology and Medicine, 40(10), 823–830. doi:10.1016/j.compbiomed.2010.08.005.

Sharmila, A., Madan, S., & Srivastava, K. (2018). Epilepsy detection using dwt based hurst exponent and SVM, K-NN classifiers. Serbian Journal of Experimental and Clinical Research, 19(4), 311–319. doi:10.1515/SJECR-2017-0043.

Alickovic, E., Kevric, J., & Subasi, A. (2018). Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. In Biomedical Signal Processing and Control (Vol. 39, pp. 94–102). doi:10.1016/j.bspc.2017.07.022.

Satapathy, S. K., Dehuri, S., & Jagadev, A. K. (2016). An empirical analysis of different machine learning techniques for classification of EEG signal to detect epileptic seizure. International Journal of Applied Engineering Research, 11(1), 120–129.

Subasi, A., Kevric, J., & Abdullah Canbaz, M. (2019). Epileptic seizure detection using hybrid machine learning methods. Neural Computing and Applications, 31(1), 317–325. doi:10.1007/s00521-017-3003-y.

Hussain, L. (2018). Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach. Cognitive Neurodynamics, 12(3), 271–294. doi:10.1007/s11571-018-9477-1.

Rosas-Romero, R., Guevara, E., Peng, K., Nguyen, D. K., Lesage, F., Pouliot, P., & Lima-Saad, W. E. (2019). Prediction of epileptic seizures with convolutional neural networks and functional near-infrared spectroscopy signals. Computers in Biology and Medicine, 111(103355). doi:10.1016/j.compbiomed.2019.103355.

Gusnanto, A., Calza, S., & Pawitan, Y. (2007). Identification of differentially expressed genes and false discovery rate in microarray studies. Current Opinion in Lipidology, 18(2), 187–193. doi:10.1097/MOL.0b013e3280895d6f.

Dudoit, S., Yang, Y. H., Callow, M. J., & Speed, T. P. (2002). Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica sinica, 111-139.

Pepe MS. (2003). The statistical evaluation of medical tests for classification and prediction. Oxford (UK): Oxford University Press; ISBN: 9780198565826.

Parodi, S., Muselli, M., Fontana, V., & Bonassi, S. (2003). ROC curves are a suitable and flexible tool for the analysis of gene expression profiles. Cytogenetic and Genome Research, 101(1), 90–91. doi:10.1159/000074404.

Patidar, S., & Panigrahi, T. (2017). Detection of epileptic seizure using Kraskov entropy applied on tunable-Q wavelet transform of EEG signals. Biomedical Signal Processing and Control, 34, 74–80. doi:10.1016/j.bspc.2017.01.001.

Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., & Adeli, H. (2018). Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Computers in Biology and Medicine, 100, 270–278. doi:10.1016/j.compbiomed.2017.09.017.

Zhou, M., Tian, C., Cao, R., Wang, B., Niu, Y., Hu, T., Guo, H., & Xiang, J. (2018). Epileptic seizure detection based on EEG signals and CNN. Frontiers in Neuroinformatics, 12, 95. doi:10.3389/fninf.2018.00095.

Tsipouras, M. G. (2019). Spectral information of EEG signals with respect to epilepsy classification. Eurasip Journal on Advances in Signal Processing, 2019(1). doi:10.1186/s13634-019-0606-8.

Bayrak, S., Yucel, E., Takci, H., & Samli, R. (2021). Classification of epileptic electroencephalograms using time-frequency and back propagation methods. Computers, Materials and Continua, 69(2), 1427–1446. doi:10.32604/cmc.2021.015524.

Wang, Z., Wang, Q., Liu, J., Liang, Z., & Xu, J. (2020). New SAR imaging algorithm via the optimal time-frequency transform domain. Computers, Materials and Continua.

Sharma, R., Sircar, P., & Pachori, R. B. (2020). Automated Seizure Classification Using Deep Neural Network Based on Autoencoder. In Handbook of Research on Advancements of Artificial Intelligence in Healthcare Engineering, IGI Global Publications 2020 (pp. 1–19). doi:10.4018/978-1-7998-2120-5.ch001.

Abdelhameed, A., & Bayoumi, M. (2021). A Deep Learning Approach for Automatic Seizure Detection in Children with Epilepsy. Frontiers in Computational Neuroscience, 15. doi:10.3389/fncom.2021.650050.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-01-011


  • There are currently no refbacks.

Copyright (c) 2022 Buchanna G