Effect of Applying Cold Plasma on Structural, Antibacterial and Self Cleaning Properties of α-Fe2O3 (HEMATITE) Thin Film

Abdalhussain A. Khadayeir, Ahmed H. Wannas, Falah H. Yousif


Objective: In this study, α-Fe2O3 thin film was formed on a glass substrate to study the impact of adding cold plasma on the self-cleaning and antibacterial properties of the samples. Method: The samples were synthesized using the chemical spray pyrolysis (CSP) method at 450°C. X-ray powder diffraction (XRD), scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDS), and atomic force microscope were used to investigate the morphological and structural characteristics of α-Fe2O3 thin layers prior to and following plasma injection. Finding: The degree of wettability and antibacterial characteristics of iron oxide (hematite) thin film were evaluated in the presence of gram-negative and gram-positive bacteria prior to and following plasma injection, given the great potential of plasma injection in the surface modification of thin films. Novelty: The findings indicate that exposing plasma to α-Fe2O3thin film produces substantial changes in morphology, self-cleaning, and antibacterial characteristics.


Doi: 10.28991/ESJ-2022-06-01-06

Full Text: PDF


Cold Plasma; α-Fe2O3; Iron Oxide (Hematite); Antibacterial; Wettability.


Nehra, V., Kumar, A., & Dwivedi, H. K. (2008). Atmospheric non-thermal plasma sources. International Journal of Engineering, 2(1), 53-68.

Júnior, J. W. N., Monção, R. M., Bandeira, R. M., Ribeiro dos Santos Júnior, J., Araujo, J. F. D. F., Moura, J. V. B., Lima, L. B. S., Santos, F. E. P., Lima, C. da L., Costa, T. H. de C., & de Sousa, R. R. M. (2021). Growth of α-Fe2O3 thin films by plasma deposition: Studies of structural, morphological, electrochemical, and thermal-optical properties. Thin Solid Films, 736, 138919. doi:10.1016/j.tsf.2021.138919.

Ramachandran, R. K., Dendooven, J., & Detavernier, C. (2014). Plasma enhanced atomic layer deposition of Fe2O3 thin films. Journal of Materials Chemistry A, 2(27), 10662–10667. doi:10.1039/c4ta01486c.

Lee, E. T., Jang, G. E., Kim, C. K., & Yoon, D. H. (2001). Fabrication and gas sensing properties of α-Fe2O3 thin film prepared by plasma enhanced chemical vapor deposition (PECVD). Sensors and Actuators, B: Chemical, 77(1–2), 221–227. doi:10.1016/S0925-4005(01)00716-X.

Herrmann, H. W., Henins, I., Park, J., & Selwyn, G. S. (1999). Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ). Physics of Plasmas, 6(5 I), 2284–2289. doi:10.1063/1.873480.

Pirovano, C., Islam, M. S., Vannier, R. N., Nowogrocki, G., & Mairesse, G. (2001). Modelling the crystal structures of Aurivillius phases. Solid State Ionics, 140(1–2), 115–123. doi:10.1016/S0167-2738(01)00699-3.

Liu, G., Tuttle, B. R., & Dhar, S. (2015). Silicon carbide: A unique platform for metal-oxide-semiconductor physics. Applied Physics Reviews, 2(2), 21307. doi:10.1063/1.4922748.

Wan, Y. Z., Raman, S., He, F., & Huang, Y. (2007). Surface modification of medical metals by ion implantation of silver and copper. Vacuum, 81(9), 1114–1118. doi:10.1016/j.vacuum.2006.12.011.

Matyar, F., Kaya, A., & Dinçer, S. (2008). Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey. Science of the Total Environment, 407(1), 279–285. doi:10.1016/j.scitotenv.2008.08.014.

Yasuyuki, M., Kunihiro, K., Kurissery, S., Kanavillil, N., Sato, Y., & Kikuchi, Y. (2010). Antibacterial properties of nine pure metals: A laboratory study using Staphylococcus aureus and Escherichia coli. Biofouling, 26(7), 851–858. doi:10.1080/08927014.2010.527000.

Bhatt, I., & Tripathi, B. N. (2011). Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere, 82(3), 308–317. doi:10.1016/j.chemosphere.2010.10.011.

Saptarshi, S. R., Duschl, A., & Lopata, A. L. (2013). Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle. Journal of Nanobiotechnology, 11(1), 1–12. doi:10.1186/1477-3155-11-26.

Ramimoghadam, D., Bagheri, S., & Hamid, S. B. A. (2014). Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 368, 207–229. doi:10.1016/j.jmmm.2014.05.015.

Neyaz, N., Siddiqui, W. A., & Nair, K. K. (2014). Application of surface functionalized iron oxide nanomaterials as a nanosorbents in extraction of toxic heavy metals from ground water : A review. International Journal of Environmental Sciences, 4(4), 472–483. doi:10.6088/ijes.2014040400004.

Lu, Y., Yin, Y., Mayers, B. T., & Xia, Y. (2002). Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through a Sol-Gel Approach. Nano Letters, 2(3), 183–186. doi:10.1021/nl015681q.

Wang, Y.-X., Xuan, S., Port, M., & Idee, J.-M. (2013). Recent Advances in Superparamagnetic Iron Oxide Nanoparticles for Cellular Imaging and Targeted Therapy Research. Current Pharmaceutical Design, 19(37), 6575–6593. doi:10.2174/1381612811319370003.

Kagan, D., Laocharoensuk, R., Zimmerman, M., Clawson, C., Balasubramanian, S., Kang, D., Bishop, D., Sattayasamitsathit, S., Zhang, L., & Wang, J. (2010). Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small, 6(23), 2741–2747. doi:10.1002/smll.201001257.

Mahmoudi, M., Simchi, A., Imani, M., Milani, A. S., & Stroeve, P. (2008). Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. Journal of Physical Chemistry B, 112(46), 14470–14481. doi:10.1021/jp803016n.

Morris, R. V., Lauer, H. V., Lawson, C. A., Gibson, E. K., Nace, G. A., & Stewart, C. (1985). Spectral and other physicochemical properties of submicron powders of hematite (alpha -Fe2O3), maghemite (gamma - Fe2O3), magnetite (Fe3O4), goethite (alpha - FeOOH) and lepidocrocite (gamma -FeOOH). Journal of Geophysical Research, 90(B4), 3126–3144. doi:10.1029/JB090iB04p03126.

Long, N. V., Yang, Y., Teranishi, T., Thi, C. M., Cao, Y., & Nogami, M. (2015). Related magnetic properties of CoFe2O4 cobalt ferrite particles synthesised by the polyol method with NaBH4 and heat treatment: new micro and nanoscale structures. RSC Advances, 5(70), 56560–56569. doi:10.1039/c5ra10015a.

Francis, A. J., & Dodge, C. J. (1988). Anaerobic Microbial Dissolution of Transition and Heavy Metal Oxides. Applied and Environmental Microbiology, 54(4), 1009–1014. doi:10.1128/aem.54.4.1009-1014.1988.

Shohet, J. L. (1991). Plasma-Aided Manufacturing. IEEE Transactions on Plasma Science, 19(5), 725–733. doi:10.1109/27.108405.

Ostrikov, K. (2005). Reactive plasmas as a versatile nanofabrication tool. Reviews of Modern Physics, 77(2), 489–511. doi:10.1103/RevModPhys.77.489.

Lee, E. T., Jang, G. E., Kim, C. K., & Yoon, D. H. (2001). Fabrication and gas sensing properties of α-Fe2O3 thin film prepared by plasma enhanced chemical vapor deposition (PECVD). Sensors and Actuators, B: Chemical, 77(1–2), 221–227. doi:10.1016/S0925-4005(01)00716-X.

Lian, J., Duan, X., Ma, J., Peng, P., Kim, T., & Zheng, W. (2009). Hematite (α-Fe2O3) with various morphologies: Ionic liquid-assisted synthesis, formation mechanism, and properties. ACS Nano, 3(11), 3749–3761. doi:10.1021/nn900941e.

Tadic, M., Panjan, M., Damnjanovic, V., & Milosevic, I. (2014). Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method. Applied Surface Science, 320(30), 183–187. doi:10.1016/j.apsusc.2014.08.193.

Lee, D., Choi, Y. W., Na, Y. S., Choi, S. S., Park, D. W., & Choi, J. (2015). Fe2O3 nanopowders prepared by a thermal plasma process for water oxidation. Materials Research Bulletin, 68, 221–226. doi:10.1016/j.materresbull.2015.03.045.

Asoufi, H. M., Al-Antary, T. M., & Awwad, A. M. (2018). Green route for synthesis hematite (α-Fe2O3) nanoparticles: Toxicity effect on the green peach aphid, Myzus persicae (Sulzer). Environmental Nanotechnology, Monitoring and Management, 9, 107–111. doi:10.1016/j.enmm.2018.01.004.

Pech, J., Hannoyer, B., & Marest, G. (2000). Duplex structure of oxides produced on low-carbon steel surfaces after DC plasma jet treatment. Surface and Coatings Technology, 124(2–3), 228–234. doi:10.1016/S0257-8972(99)00628-3.

Drickamer, H. G., Lynch, R. W., Clendenen, R. L., & Perez-Albueene, E. A. (1967). X-Ray Diffraction Studies of the Lattice Parameters of Solids under Very High Pressure. Solid State Physics - Advances in Research and Applications, 19(C), 135–228. doi:10.1016/S0081-1947(08)60529-9.

Zhu, L. P., Bing, N. C., Wang, L. L., Jin, H. Y., Liao, G. H., & Wang, L. J. (2012). Self-assembled 3D porous flowerlike α-Fe 2O 3 hierarchical nanostructures: Synthesis, growth mechanism, and their application in photocatalysis. Dalton Transactions, 41(10), 2959–2965. doi:10.1039/c2dt11822j.

Kouotou, P. M., Tian, Z. Y., Vieker, H., Beyer, A., Gölzhäuser, A., & Kohse-Höinghaus, K. (2013). Selective synthesis of α-Fe2O3 thin films and effect of the deposition temperature and lattice oxygen on the catalytic combustion of propene. Journal of Materials Chemistry A, 1(35), 10495–10504. doi:10.1039/c3ta11354j.

Lee, S., & Park, J. W. (2020). Hematite/graphitic carbon nitride nanofilm for fenton and photocatalytic oxidation of methylene blue. Sustainability (Switzerland), 12(7), 1–15. doi:10.3390/su12072866.

Hussain, S. A., Radi, A. J., Najim, F. A., & Shaheed, M. A. (2020). Structural, Optical and Sensing Properties of ZnO:Cu Films Prepared by Pulsed Laser Deposition. Journal of Physics: Conference Series, 1591(1), 012088. doi:10.1088/1742-6596/1591/1/012088.

Navale, S. T., Mali, V. V., Pawar, S. A., Mane, R. S., Naushad, M., Stadler, F. J., & Patil, V. B. (2015). Electrochemical supercapacitor development based on electrodeposited nickel oxide film. RSC Advances, 5(64), 51961–51965. doi:10.1039/c5ra07953e.

Tarwal, N. L., & Patil, P. S. (2010). Superhydrophobic and transparent ZnO thin films synthesized by spray pyrolysis technique. Applied Surface Science, 256(24), 7451–7456. doi:10.1016/j.apsusc.2010.05.089.

Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 28(8), 988–994. doi:10.1021/ie50320a024.

Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546–551. doi:10.1039/tf9444000546.

Wang, Z., Lee, Y. H., Wu, B., Horst, A., Kang, Y., Tang, Y. J., & Chen, D. R. (2010). Anti-microbial activities of aerosolized transition metal oxide nanoparticles. Chemosphere, 80(5), 525–529. doi:10.1016/j.chemosphere.2010.04.047.

Sun, H. qi, Lu, X. mei, & Gao, P. ji. (2011). The exploration of the antibacterial mechanism of Fe3+ against bacteria. Brazilian Journal of Microbiology, 42(1), 410–414. doi:10.1590/S1517-83822011000100050.

Weltmann, K. D., Kinde, E., Von Woedtke, T., Hähnel, M., Stieber, M., & Brandenburg, R. (2010). Atmospheric-pressure plasma sources: Prospective tools for plasma medicine. Pure and Applied Chemistry, 82(6), 1223–1237. doi:10.1351/PAC-CON-09-10-35.

Shintani, H., Sakudo, A., Burke, P., & McDonnell, G. (2010). Gas plasma sterilization of microorganisms and mechanisms of action. Experimental and Therapeutic Medicine, 1(5), 731–738. doi:10.3892/etm.2010.136.

Ferreira, S. D., Dernell, W. S., Powers, B. E., Schochet, R. A., Kuntz, C. A., Withrow, S. J., & Wilkins, R. M. (2001). Effect of gas-plasma sterilization on the osteoinductive capacity of demineralized bone matrix. Clinical Orthopaedics and Related Research, 388(388), 233–239. doi:10.1097/00003086-200107000-00032.

Shintani, H., Shimizu, N., Imanishi, Y., Sekiya, T., Tamazawa, K., Taniguchi, A., & Kido, N. (2007). Inactivation of microorganisms and endotoxins by low temperature nitrogen gas plasma exposure. Biocontrol Science, 12(4), 131–143. doi:10.4265/bio.12.131.

Weltmann, K. D., & Von Woedtke, T. (2017). Plasma medicine - Current state of research and medical application. Plasma Physics and Controlled Fusion, 59(1), 014031–01438. doi:10.1088/0741-3335/59/1/014031.

Tanaka, H., Mizuno, M., Ishikawa, K., Toyokuni, S., Kajiyama, H., Kikkawa, F., & Hori, M. (2018). Molecular mechanisms of non-thermal plasmainduced effects in cancer cells. Biological Chemistry, 400(1), 87–91. doi:10.1515/hsz-2018-0199.

Shen, J., Tian, Y., Li, Y., Ma, R., Zhang, Q., Zhang, J., & Fang, J. (2016). Bactericidal Effects against S. aureus and Physicochemical Properties of Plasma Activated Water stored at different temperatures. Scientific Reports, 6(1), 28505–28509. doi:10.1038/srep28505.

Kamgang-Youbi, G., Herry, J. M., Meylheuc, T., Brisset, J. L., Bellon-Fontaine, M. N., Doubla, A., & Naïtali, M. (2009). Microbial inactivation using plasma-activated water obtained by gliding electric discharges. Letters in Applied Microbiology, 48(1), 13–18. doi:10.1111/j.1472-765X.2008.02476.x.

Lee, K., Paek, K., Ju, W. T., & Lee, Y. A Study on the Effect of Microbial Sterilization Using Plasma Generator with a Flexible Electrodes Structure. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 33(1), 70–77. doi:10.4313/JKEM.2020.33.1.70.

Nicol, M. K. J., Brubaker, T. R., Honish, B. J., Simmons, A. N., Kazemi, A., Geissel, M. A., Whalen, C. T., Siedlecki, C. A., Bilén, S. G., Knecht, S. D., & Kirimanjeswara, G. S. (2020). Antibacterial effects of low-temperature plasma generated by atmospheric-pressure plasma jet are mediated by reactive oxygen species. Scientific Reports, 10(1), 59652–6. doi:10.1038/s41598-020-59652-6.

Bălan, G. G., Roşca, I., Ursu, E. L., Doroftei, F., Bostănaru, A. C., Hnatiuc, E., Năstasă, V., Şandru, V., Ştefănescu, G., Trifan, A., & Mareş, M. (2018). Plasma-activated water: A new and effective alternative for duodenoscope reprocessing. Infection and Drug Resistance, 11, 727–733. doi:10.2147/IDR.S159243.

Martusevich, A. K., Solov’eva, A. G., Galka, A. G., Kozlova, L. A., & Yanin, D. V. (2019). Effects of Helium Cold Plasma on Erythrocyte Metabolism. Bulletin of Experimental Biology and Medicine, 167(2), 198–200. doi:10.1007/s10517-019-04490-4.

Lu, H., Patil, S., Keener, K. M., Cullen, P. J., & Bourke, P. (2014). Bacterial inactivation by high-voltage atmospheric cold plasma: Influence of process parameters and effects on cell leakage and DNA. Journal of Applied Microbiology, 116(4), 784–794. doi:10.1111/jam.12426.

Shin, N., Saravanakumar, K., & Wang, M.-H. (2019). Sonochemical Mediated Synthesis of Iron Oxide (Fe3O4 and Fe2O3) Nanoparticles and their Characterization, Cytotoxicity and Antibacterial Properties. Journal of Cluster Science, 30(3), 669–675. doi:10.1007/s10876-019-01526-7

Belkhedkar, M. R., Ubale, A. U., Sakhare, Y. S., Zubair, N., & Musaddique, M. (2016). Characterization and antibacterial activity of nanocrystalline Mn doped Fe2O3 thin films grown by successive ionic layer adsorption and reaction method. Journal of the Association of Arab Universities for Basic and Applied Sciences, 21, 38–44. doi:10.1016/j.jaubas.2015.03.001.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-01-06


  • There are currently no refbacks.

Copyright (c) 2022 Abdalhussain A. Khadayeir, Ahmed H. Wannas, Falah H. Yousif