Analysis of Bifurcations in a Wind Turbine System Based on DFIG

Saber Khosravi, Mehran Zamanifar, Pouya Derakhshan-Barjoei

Abstract


This main aim of this study is investigation of the dynamic stability in a grid-connected wing turbine system based on Double Feed Induction Generator (DFIG) using the bifurcation theory. Regarding the overview of stability by Cardenas et. al. [1]. In our research, the proposed system model is simulated based on bifurcation theory in MATLAB software. In each step, one of the controlling or non-controlling parameters is selected. Eigenvalues of system are traced permanently during simulation. According to the change of the eigenvalues of system, due to the change of bifurcation parameter, stability of the equilibrium point and special bifurcations including saddle-node and Hopf bifurcations in the system are determined.

Keywords


Wind Turbine System; Bifurcation Theory; Saddle-Node Bifurcation; Hopf Bifurcation.

References


R. Cardenas, R. Pena, S. Alepuz, G. Asher, “Overview of control systems for the operation of DFIGs in wind energy applications”, IEEE Transactions on Industrial Electronics 60 (2013) 2776-2797, doi: 10.1109/iecon.2013.6699116.

G.D. Marques, D.M. Sousa, “Stator flux active damping methods for field-oriented doubly fed induction generator”, IEEE Transactions on Energy Conversion 27 (2012) 799-806, doi: 10.1109/epqu.2011.6128920.

D.C. Gaona, L.M. Goytia, O.A. Lara, “Fault ride-through improvement of DFIG-WT by integrating a two-degree-of-freedom internal model control”, IEEE Transactions on Industrial Electronics 60 (2013) 1133-1145, doi: 10.1109/tie.2012.2216234.

Z.S. Zhang, Y.Z. Sun, J. Lin, G.J. Li, “Coordinated frequency regulation by doubly fed induction generator-based wind power plants”, IET Renewable Power Generation 6 (2012) 38-47, doi: 10.1049/iet-rpg.2010.0208.

A.J.S. Filho, E.R. Filho, “Model-based predictive control applied to the doubly-fed induction generator direct power control”, IEEE Transactions on Sustainable Energy 3 (2012) 398-406, doi:10.1109/tste.2012.2186834.

Y. A. Kuznetsov, Elements of applied bifurcation theory, Second Edition, Springer, 1998, doi: 10.1007/b98848.

S. Wiggins, Introduction to applied nonlinear dynamical systems, Second Edition, Springer, 2003, doi: 10.1007/0-387-21749-5_1.

I. A. Hiskens, “Analysis tools for power systems-contending with nonlinearities”, Proc. IEEE, vol. 83, pp. 1573–1587, Nov. 1995, doi: 10.1109/5.481635.

V. Ajjarapu and B. Lee, “Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system”, IEEE Trans. Power Syst., vol. 7, pp. 312–319, Feb. 1992, doi: 10.1109/pica.1991.160594.

H. Wang, E. Abed, and A. M. A. Hamdan, “Bifurcations, Chaos, and crises in voltage collapse of a model power system”, IEEE Trans. Circuits Syst. I: Fund. Theory Appl., vol. 41, no. 2, 294–302, 1994, doi: 10.1016/s0960-0779(02)00072-3.

V. Ajjarapu, and B. Lee, “Bifurcation, Theory and its application to nonlinear dynamical phenomena in an electrical power system”, IEEE Trans. Power Syst., vol. 7, no. 1, pp. 424–431, 1992, doi: 10.1109/pica.1991.160594.

W. Ji, and V. Venkatasubramanian, “Dynamics of a minimal power system: invariant tori and quasi-periodic motions”, IEEE Trans. Circuits Syst. I: Fund. Theory Appl., vol. 42, no. 12, pp. 981–1000, 1995, doi: 10.1109/iscas.1995.521612.

C. A. Canizares, “Voltage stability assessment: concepts, practices and tools”, Tech. rep., IEEE/PES Power System Stability Subcommittee, Final Document, available at http://www.power.uwaterloo.ca, Aug. 2002, doi: 10.4018/978-1-5225-2584-4.ch029.

N. Koppel, and R. B. Washburn, “Chaotic motions in the two-degree-of-freedom swing equations,” IEEE Trans. Circuits Syst., vol. CAS-29, pp. 738–746, Nov. 1982, doi: 10.1109/tcs.1982.1085094.

I. Dobson, and H. D. Chiang, “Toward a theory of voltage collapse in electric power systems,” Syst. Contr. Lett., vol. 13, pp. 253–262, 1989, doi: 10.1109/59.387892.

M. Varghese, F. F.Wu, and P.Varaiya, “Bifurcations associated with subsynchronous resonance,” IEEE Trans. Power Syst., vol. 13, pp. 139–144, Feb. 1998, doi: 10.1036/1097-8542.664550.

C. Kieny, “Application of the bifurcation theory in studying and understanding the global behavior of a ferroresonant electric power circuit”, IEEE Trans. Power Delivery, vol. 6, pp. 866–872, Apr. 1991, doi: 10.1109/61.131146.

H. O. Wang, E. H. Abed, and A. M. A. Hamdan, “Bifurcation, chaos and crisis in voltage collapse of a model power system”, IEEE Trans. Circuits Syst., vol. 41, no. 3, pp. 294–302, Mar. 1994, doi: 10.1016/s0960-0779(97)00169-0.

S. H. Lee, J. K. Park, and B. H. Lee, “A study on the nonlinear controller to prevent unstable Hopf bifurcation”, in IEEE Power Eng. Soc. Summer Meeting, vol. 2, Jul. 2001, pp. 978–982, doi: 10.1109/pess.2001.970189.

W. D. Rosehart, and C. A. Cañizares, “Bifurcation analysis of various power system models,” Int. J. Elect. Power Energy Syst., vol. 21, no. 3, pp. 171–182, Mar. 1999, doi: 10.1016/s0140-6701(99)91128-1.

C. A. Cañizares, “On bifurcations, voltage collapse and load modeling”, IEEE Trans. Power Syst., vol. 10, pp. 512–522, Feb. 1995, doi: 10.1109/59.373978.

M. A. Pai, P.W. Sauer, and B. C. Lesieutre, “Structural stability in power systems-effect of load models”, IEEE Tran. Power Syst., vol. 10, pp. 609–615, Feb. 1995, doi: 10.1109/apt.1993.686875.

T. K. Vu, and C. C. Liu, “Analysis of tap-changer dynamics and construction of voltage stability regions”, IEEE Trans. Circuits Syst., vol. 36, no. 4, pp. 575–590, Apr. 1989, doi: 10.1109/iscas.1988.15242.

N. Mithulananthan, C. A. Cañizares, J. Reeve, and G. J. Rogers, “Comparison of PSSS, SVC and STATCOM controllers for damping power system oscillations,” IEEE Trans. Power Syst., vol. 18, pp. 786–792, May 2003, doi: 10.1109/tpwrs.2003.811181.

R. Garcia-Kasusky, C. R. Fuerte-Esquivel, and D. Torres-Lucio, “Assessment of the SVC effect on nonlinear instabilities and voltage collapse in electric power systems,” in IEEE PES General Meeting, vol. 4, Toronto, ON, Canada, 2003, pp. 2659–2666, doi: 10.1109/pes.2003.1271067.

P. M. Vahdati, A. Kazemi, M. H. Amini, and L. Vanfretti, “Hopf bifurcation control of power system nonlinear dynamics via a dynamic state feedback controller-part I: Theory and Modeling”, IEEE Trans. On Power Systems, Vol. 32, No. 4, pp. 3217-3228, 2017, doi: 10.1109/tpwrs.2016.2633389.

P. M. Vahdati, L. Vanfretti, M. H. Amini, and A. Kazemi, “Hopf bifurcation control of power systems nonlinear dynamics via a dynamic state feedback controller-part II: Performance Evaluation”, IEEE Trans. On Power Systems, Vol. 32, No. 4, pp. 3229-3236, 2017, doi: 10.1109/tpwrs.2017.2679131.

Z. Shuai, Y. Hu, Y. Peng, C. Tu, and Z. J. Shen, “Dynamic stability analysis of synchronverter-dominated microgrid based on bifurcation theory”, IEEE Trans. Trans. On Industrial Electronics, Vol. 64, No. 9, pp. 7467-7477, 2017, doi: 10.1109/tie.2017.2652387.

K. Skandarama, R. C. Mala, and N. Prabhu, “Control of bifurcation in a VSC based STATCOM”, Electrical Power and Energy Systems, vol. 21, pp. 187-195, 2015, doi: 10.2016/j.protcy.2015.10.087.

M. Zamanifar, B. Fani, M. E. H. Golshan, and H. R. Karshenas, “Dynamic modeling and optimal control of DFIG wind energy systems using DFT and NGSA-II”, Electric Power Systems Research, vol. 108, 50-58, 2014, doi: 10.2016/j.epsr.2013.10.021.

Y. Tang, P. Ju, H. He, C. Qin, F. Wu, “Optimized control of DFIG-based wind generation using sensitivity analysis and particle swarm optimization”, IEEE Transactions on Smart Grid vol. 4, pp. 1-12, 2012, doi: 10.1109/pesmg.2013.6672713.


Full Text: PDF

DOI: 10.28991/esj-2018-01126

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Saber Khosravi, Mehran Zamanifar, Pouya Derakhshan-Barjoei