Minimal Redundancy Linear Array and Uniform Linear Arrays Beamforming Applications in 5G Smart Devices

Satyanand Singh

Abstract


Minimum Redundancy Linear Arrays (MRLAs) and Uniform Linear Arrays (ULAs) investigation conducted with the possibility of using them in future 5G smart devices. MRLAs are designed to minimize the number of sensor pairs with the same spatially correlated delay. It eliminates selected antennas from the entire composite antenna array and preserves all possible antenna spacing.  MRLAs have attractive features for linear sparse arrays, even if the built-in surface is deformed, it works without problems. To our knowledge, MRLAs have not been applied to smart devices so far. In this work, a 7-element ULAs and 4-element MRLAs (same aperture) were used for the simulation. The Half Power Beamwidth (HPBW) is 0.666 and the Null-to-Null Beamwidth ( ) is 1.385 in ψ-space. In comparison, the standard 4-element arrays are 1.429 and 3.1416, while the standard 7-element linear arrays are 0.801 and 1.795 respectively. Experimental results show that 4-element MLRAs have a narrower mean beam, much higher sidelobes and shallow nulls. Therefore, in terms of main lobe features, 4- elements MRLAs have an improvement over the standard 7-element ULAs.

 

Doi: 10.28991/esj-2021-SP1-05

Full Text: PDF


Keywords


Minimum Redundancy Linear Arrays; MRLAs; Uniform linear arrays (ULAs); Minimum Redundant Array (MRA); Prolate Spheroidal Sequences (PSS); Multi-Beam Antenna (MBA); Planar Aperture Antennas (PAAs).

References


Marcus, Michael J. “5G and ‘IMT for 2020 and Beyond’ [Spectrum Policy and Regulatory Issues].” IEEE Wireless Communications 22, no. 4 (August 2015): 2–3. doi:10.1109/mwc.2015.7224717.

Pearson, D., S.U. Pillai, and Y. Lee. “An Algorithm for Near-Optimal Placement of Sensor Elements.” IEEE Transactions on Information Theory 36, no. 6 (1990): 1280–1284. doi:10.1109/18.59928.

BouDaher, Elie, Fauzia Ahmad, Moeness G. Amin, and Ahmad Hoorfar. “Mutual Coupling Effect and Compensation in Non-Uniform Arrays for Direction-of-Arrival Estimation.” Digital Signal Processing 61 (February 2017): 3–14. doi:10.1016/j.dsp.2016.06.005.

Zhang, Yan-kui, Hai-yun Xu, Da-ming Wang, Bin Ba, and Si-yao Li. “A Novel Designed Sparse Array for Noncircular Sources with High Degree of Freedom.” Mathematical Problems in Engineering 2019 (January 29, 2019): 1–10. doi:10.1155/2019/1264715.

Hong, Wei, Zhi Hao Jiang, Chao Yu, Jianyi Zhou, Peng Chen, Zhiqiang Yu, Hui Zhang, et al. “Multibeam Antenna Technologies for 5G Wireless Communications.” IEEE Transactions on Antennas and Propagation 65, no. 12 (December 2017): 6231–6249. doi:10.1109/tap.2017.2712819.

Dahri, Muhammad Hashim, Mohd Haizal Jamaluddin, Muhammad Inam Abbasi, and Muhammad Ramlee Kamarudin. “A Review of Wideband Reflectarray Antennas for 5G Communication Systems.” IEEE Access 5 (2017): 17803–17815. doi:10.1109/access.2017.2747844.

Zhu, Qian, Kung Bo Ng, Chi Hou Chan, and Kwai-Man Luk. “Substrate-Integrated-Waveguide-Fed Array Antenna Covering 57–71 GHz Band for 5G Applications.” IEEE Transactions on Antennas and Propagation 65, no. 12 (December 2017): 6298–6306. doi:10.1109/tap.2017.2723080.

Mao, Chun-Xu, Steven Gao, and Yi Wang. “Broadband High-Gain Beam-Scanning Antenna Array for Millimeter-Wave Applications.” IEEE Transactions on Antennas and Propagation 65, no. 9 (September 2017): 4864–4868. doi:10.1109/tap.2017.2724640.

Romanofsky, Robert R. “Advances in Scanning Reflectarray Antennas Based on Ferroelectric Thin-Film Phase Shifters for Deep-Space Communications.” Proceedings of the IEEE 95, no. 10 (October 2007): 1968–1975. doi:10.1109/jproc.2007.905065.

Cheng, Yu Jian, Wei Hong, Ke Wu, Zhen Qi Kuai, Chen Yu, Ji Xin Chen, Jian Yi Zhou, and Hong Jun Tang. “Substrate Integrated Waveguide (SIW) Rotman Lens and Its Ka-Band Multibeam Array Antenna Applications.” IEEE Transactions on Antennas and Propagation 56, no. 8 (August 2008): 2504–2513. doi:10.1109/tap.2008.927567.

Chen, Peng, Wei Hong, Zhenqi Kuai, Junfeng Xu, Haiming Wang, Jixin Chen, Hongjun Tang, Jianyi Zhou, and Ke Wu. “A Multibeam Antenna Based on Substrate Integrated Waveguide Technology for MIMO Wireless Communications.” IEEE Transactions on Antennas and Propagation 57, no. 6 (June 2009): 1813–1821. doi:10.1109/tap.2009.2019868.

Yang, Binqi, Zhiqiang Yu, Yunyang Dong, Jianyi Zhou, and Wei Hong. “Compact Tapered Slot Antenna Array for 5G Millimeter-Wave Massive MIMO Systems.” IEEE Transactions on Antennas and Propagation 65, no. 12 (December 2017): 6721–6727. doi:10.1109/tap.2017.2700891.

Ojaroudiparchin, Naser, Ming Shen, Shuai Zhang, and Gert Frolund Pedersen. “A Switchable 3-D-Coverage-Phased Array Antenna Package for 5G Mobile Terminals.” IEEE Antennas and Wireless Propagation Letters 15 (2016): 1747–1750. doi:10.1109/lawp.2016.2532607.

Wenyao Zhai, Vahid Miraftab, Morris Repeta, David Wessel, and Wen Tong. “Dual-Band Millimeter-Wave Interleaved Antenna Array Exploiting Low-Cost PCB Technology for High Speed 5G Communication.” 2016 IEEE MTT-S International Microwave Symposium (IMS) (May 2016). doi:10.1109/mwsym.2016.7540293.

Jilani, Syeda Fizzah, and Akram Alomainy. “A Multiband Millimeter-Wave 2-D Array Based on Enhanced Franklin Antenna for 5G Wireless Systems.” IEEE Antennas and Wireless Propagation Letters 16 (2017): 2983–2986. doi:10.1109/lawp.2017.2756560.

Ishiguro, Masato. “Minimum Redundancy Linear Arrays for a Large Number of Antennas.” Radio Science 15, no. 6 (November 1980): 1163–1170. doi:10.1029/rs015i006p01163.

Hong, Wonbin, Kwang-Hyun Baek, and Seungtae Ko. “Millimeter-Wave 5G Antennas for Smartphones: Overview and Experimental Demonstration.” IEEE Transactions on Antennas and Propagation 65, no. 12 (December 2017): 6250–6261. doi:10.1109/tap.2017.2740963.

Ebrahimi, Mohammad, Mahmoud Modarres-Hashemi, and Ehsan Yazdian. “An Efficient Method for Sparse Linear Array Sensor Placement to Achieve Maximum Degrees of Freedom.” IEEE Sensors Journal 21, no. 18 (September 15, 2021): 20788–20795. doi:10.1109/jsen.2021.3093889.

Albagory, Yasser. “Direction-Independent and Self-Reconfigurable Spherical-Cap Antenna Array Beamforming Technique for Massive 3D MIMO Systems.” Wireless Networks 26, no. 8 (July 20, 2020): 6111–6123. doi:10.1007/s11276-020-02434-9.

Juárez, Elizvan, Marco A. Panduro, Alberto Reyna, David H. Covarrubias, Aldo Mendez, and Eduardo Murillo. “Design of Concentric Ring Antenna Arrays Based on Subarrays to Simplify the Feeding System.” Symmetry 12, no. 6 (June 8, 2020): 970. doi:10.3390/sym12060970.

Chakravarthy, V. V. S. S. S., and P. Mallikarjuna Rao. "Circular array antenna optimization with scanned and unscanned beams using novel particle swarm optimization." Indian Journal of Applied Research 5, no. 4 (2015).

Lau, B.K., and Y.H. Leung. “A Dolph-Chebyshev Approach to the Synthesis of Array Patterns for Uniform Circular Arrays.” 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353) (May 2000). doi:10.1109/iscas.2000.857042.

Pearson, D., S.U. Pillai, and Y. Lee. “An Algorithm for Near-Optimal Placement of Sensor Elements.” IEEE Transactions on Information Theory 36, no. 6 (1990): 1280–1284. doi:10.1109/18.59928.

Ruf, C.S. “Numerical Annealing of Low-Redundancy Linear Arrays.” IEEE Transactions on Antennas and Propagation 41, no. 1 (1993): 85–90. doi:10.1109/8.210119.

Linebarger, D.A., I.H. Sudborough, and I.G. Tollis. “Difference Bases and Sparse Sensor Arrays.” IEEE Transactions on Information Theory 39, no. 2 (March 1993): 716–721. doi:10.1109/18.212309.

Linebarger, D.A. “A Fast Method for Computing the Coarray of Sparse Linear Arrays.” IEEE Transactions on Antennas and Propagation 40, no. 9 (1992): 1109–1112. doi:10.1109/8.166540.

Hong, Wonbin, Kwang-Hyun Baek, and Seungtae Ko. “Millimeter-Wave 5G Antennas for Smartphones: Overview and Experimental Demonstration.” IEEE Transactions on Antennas and Propagation 65, no. 12 (December 2017): 6250–6261. doi:10.1109/tap.2017.2740963.

Vaidyanathan, Palghat P., and Piya Pal. “Sparse Sensing With Co-Prime Samplers and Arrays.” IEEE Transactions on Signal Processing 59, no. 2 (February 2011): 573–586. doi:10.1109/tsp.2010.2089682.

Adhikari, Kaushallya, John R. Buck, and Kathleen E. Wage. “Extending Coprime Sensor Arrays to Achieve the Peak Side Lobe Height of a Full Uniform Linear Array.” EURASIP Journal on Advances in Signal Processing 2014, no. 1 (September 27, 2014). doi:10.1186/1687-6180-2014-148.


Full Text: PDF

DOI: 10.28991/esj-2021-SP1-05

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Satyanand Singh