Vertical Characteristics of Raindrops Size Distribution over Sumatra Region from Global Precipitation Measurement Observation

Ravidho Ramadhan, . Marzuki, . Harmadi


The climatology of the vertical profile of raindrops size distribution (DSD) over Sumatra Region (10° S – 10° N, 90° E – 110° E) has been investigated using Global Precipitation Measurement (GPM) level 2 data from January 2015 to June 2018. DSD's vertical profile was observed through a vertical profile of corrected radar reflectivity (Ze) and two parameters of normalized gamma DSD, i.e., mass-weight mean diameter (Dm) and total drops concentration (Nw). Land-ocean contrast and rain type dependence of DSD over Sumatra were clearly observed. The values of Dm and Nw were larger in the land than in the ocean. Negative and positive gradients of Dm toward the surface were dominant during stratiform and convective rains, respectively, consistent with the Z gradient. Moreover, the negative gradient of stratiform rain in the ocean is larger than in land. Thus, the depletion of large drops is dominant over the ocean, which is due to the break-up process that can be observed from the increase of Nw. Raindrop growth of convective rains is more robust over the ocean than land that can be seen from a larger value of Dmgradient. The BB strength is slightly larger over land and coastal region than over the ocean, indicating that the riming process is more dominant over land and coastal regions than the ocean.


Doi: 10.28991/esj-2021-01274

Full Text: PDF


Raindrop Size Distribution (DSD); GPM; Sumatra; Stratiform; Convective.


Jameson, A.R., and A.B. Kostinski. “What is a Raindrop Size Distribution.” Bulletin of American Meteorological Society 82, no. 6 (2001): 1169-1177. doi:10.1175/1520-0477(2001)082%3C1169:WIARSD%3E2.3.CO;2.

Tokay, A., and D.A. Short. “Evidence from tropical raindrop spectra of the origin of rain from statiform versus convective clouds.” J. Appl. Meteor. 35, (1996): 355– 371. doi:10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

Duhanyan, N., and Yelva Roustan. “Below-Cloud Scavenging by Rain of Atmospheric Gases and Particulates.” Atmospheric Environment 45, no. 39 (2011): 7201–7217. doi:10.1016/j.atmosenv.2011.09.002.

Ruan, Zheng, Hu Ming, Jianli Ma, Runsheng Ge, and Lingen Bian. “Analysis of the Microphysical Properties of a Stratiform Rain Event Using an L-Band Profiler Radar.” Journal of Meteorological Research 28, no. 2 (2014): 268–280. doi:10.1007/s13351-014-3091-x.

Jiang, H., M. Sano, and M. Sekine. "Weibull raindrop-size distribution and its application to rain attenuation." IEE Proceedings-Microwaves, Antennas and Propagation 144, no. 3 (1997): 197-200. doi:10.1049/ip-map:19971193.

Marzuki, M., T. Kozu, T. Shimomai, W. L. Randeu, H. Hashiguchi, and Y. Shibagaki. “Diurnal Variation of Rain Attenuation Obtained From Measurement of Raindrop Size Distribution in Equatorial Indonesia.” IEEE Transactions on Antennas and Propagation 57, no. 4 (2009): 1191–1196. doi:10.1109/tap.2009.2015812.

Das, S., A. Maitra, and Ashish K. Shukla. “Rain Attenuation Modeling In the 10-100 GHz Frequency using Drop Size Distributions For Different Climatic Zones In Tropical India.” Progress in Electromagnetics Research B 25 (2010): 211–224. doi:10.2528/pierb10072707.

Coppens, D., and Z. S. Haddad. “Effects of Raindrop Size Distribution Variations on Microwave Brightness Temperature Calculation.” Journal of Geophysical Research: Atmospheres 105, no. D19 (2000): 24483–24489. doi:10.1029/2000jd900226.

Uijlenhoet, R. “Raindrop Size Distributions and Radar Reflectivity–rain Rate Relationships for Radar Hydrology.” Hydrology and Earth System Sciences 5, no. 4 (2001): 615–628. doi:10.5194/hess-5-615-2001.

Yuter, Sandra E., and Robert A. Houze Jr. "Measurements of raindrop size distributions over the Pacific warm pool and implications for Z–R relations." Journal of Applied Meteorology 36, no. 7 (1997): 847-867. doi:10.1175/1520-0450(1997)036<0847:MORSDO>2.0.CO;2.

Atlas, D., and C. W. Ulbrich. "An observationally based conceptual model of warm oceanic convective rain in the tropics." Journal of Applied Meteorology 39, no. 12 (2000): 2165-2181. doi:10.1175/1520-0450(2001)040<2165:AOBCMO>2.0.CO;2.

Ulbrich, C. W., and D. Atlas. “Microphysics of Raindrop Size Spectra: Tropical Continental and Maritime Storms.” Journal of Applied Meteorology and Climatology 46, no. 11 (2007): 1777–1791. doi:10.1175/2007jamc1649.1.

Cha, J.W., K.H. Chang, S. S. Yum, and Y.J. Choi. “Comparison of the Bright Band Characteristics Measured by Micro Rain Radar (MRR) at a Mountain and a Coastal Site in South Korea.” Advances in Atmospheric Sciences 26, no. 2 (2009): 211–221. doi:10.1007/s00376-009-0211-0.

Marzuki, M., H. Hashiguchi, M. K. Yamamoto, S. Mori, and M. D. Yamanaka. “Regional Variability of Raindrop Size Distribution over Indonesia.” Annales Geophysicae 31, no. 11 (2013): 1941–1948. doi:10.5194/angeo-31-1941-2013.

Hong, Song-You, and Ji-Woo Lee. “Assessment of the WRF Model in Reproducing a Flash-Flood Heavy Rainfall Event over Korea.” Atmospheric Research 93, no. 4 (2009): 818–831. doi:10.1016/j.atmosres.2009.03.015.

Ramadhan, R., Marzuki, and Harmadi. “Vertical structure of raindrop size distribution over West Sumatera from global precipitation measurement (GPM) observation”. Journal of Physics: Conference Series. IOP Publishing, 2021. p. 012013. doi: doi:10.1088/1742-6596/1876/1/012013.

Mori, S., Hamada J. I., Y. I. Tauhid, M. D. Yamanaka, N. Okamoto, F. Murata, N. Sakurai, H. Hashiguchi, and T. Sribimawati. "Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings." Monthly Weather Review 132, no. 8 (2004): 2021-2039. doi:10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2.

Ramadhan, R., Marzuki, M. Vonnisa, Harmadi, H. Hashiguchi, and T. Shimomai. “Diurnal Variation in the Vertical Profile of the Raindrop Size Distribution for Stratiform Rain as Inferred from Micro Rain Radar Observations in Sumatra.” Advances in Atmospheric Sciences 37, no. 8 (2020): 832–846. doi:10.1007/s00376-020-9176-9.

Kozu, T., K. K. Reddy, S. Mori, M. Thurai, J. T. Ong, D. N. Rao, and T. Shimomai. “Seasonal and Diurnal Variations of Raindrop Size Distribution in Asian Monsoon Region.” Journal of the Meteorological Society of Japan. Ser. II 84A (2006): 195–209. doi:10.2151/jmsj.84a.195.

Ramadhan, R., Marzuki, Mutya V., Harmadi, H. Hashiguhci, and T. Shimomai. “Seasonal Variation in the Vertical Profile of the Raindrop Size Distribution for Stratiform Rain as Inferred from Micro Rain Radar Observations at Kototabang.” The 1st International Conference on Physics and Applied Physics (THE 1ST ICP&AP) 2019: Fundamental and Innovative Research for Improving Competitive Dignified Nation and Industrial Revolution 4.0 (2020). doi:10.1063/5.0003181.

Kozu, T., T. Shimomai, Z. Akramin, Marzuki, Y. Shibagaki, and H. Hashiguchi. “Intraseasonal Variation of Raindrop Size Distribution at Koto Tabang, West Sumatra, Indonesia.” Geophysical Research Letters 32, no. 7 (2005): 1231-1249. doi:10.1029/2004gl022340.

Hou, A. Y., R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi. “The Global Precipitation Measurement Mission.” Bulletin of the American Meteorological Society 95, no. 5 (2014): 701–722. doi:10.1175/bams-d-13-00164.1.

Marzuki, H. Hashiguchi, M. K. Yamamoto, M. Yamamoto, S. Mori, M. D. Yamanaka, R. E. Carbone, and J. D. Tuttle. “Cloud Episode Propagation over the Indonesian Maritime Continent from 10 years of Infrared Brightness Temperature Observations.” Atmospheric Research 120–121 (2013): 268–286. doi:10.1016/j.atmosres.2012.09.004.

Renggono, F., M. K. Yamamoto, H. Hashiguchi, S. Fukao, T. Shimomai, M. Kawashima, and M. Kudsy. “Raindrop Size Distribution Observed with the Equatorial Atmosphere Radar (EAR) During the Coupling Processes in the Equatorial Atmosphere (CPEA-I) Observation Campaign.” Radio Science 41, no. 5 (2006). doi:10.1029/2005rs003333.

Marzuki, H. Hashiguchi, T. Shimomai, I. Rahayu, M. Vonnisa, and Afdal. “Performance Evaluation of Micro Rain Radar over Sumatra through Comparison with Disdrometer and Wind Profiler.” Progress In Electromagnetics Research M 50 (2016): 33–46. doi:10.2528/pierm16072808.

Gorgucci, E., and L. Baldini. “Performance Evaluations of Rain Microphysical Retrieval Using Gpm Dual-Wavelength Radar by Way of Comparison With the Self-Consistent Numerical Method.” IEEE Transactions on Geoscience and Remote Sensing 56, no. 10 (2018): 5705–5716. doi:10.1109/tgrs.2018.2824399.

Chandrasekar, V., S. K. Biswas, M. Le, and H. Chen. “Cross Validation of Raindrop Size Distribution Retrievals from GPM Dual-Frequency Precipitation Radar Using Ground-Based Polarimetric Radar.” IGARSS 2018- IEEE International Geoscience and Remote Sensing Symposium (2018): 8335-8338. doi:10.1109/igarss.2018.8518881.

Petracca, M., L. P. D’Adderio, F. Porcù, G. Vulpiani, S. Sebastianelli, and S. Puca. “Validation of GPM Dual-Frequency Precipitation Radar (DPR) Rainfall Products over Italy.” Journal of Hydrometeorology 19, no. 5 (2018): 907–925. doi:10.1175/jhm-d-17-0144.1.

Kubota, T., N. Yoshida, S. Urita, T. Iguchi, S. Seto, R. Meneghini, J. Awaka, H. Hanado, S. Kida, and R. Oki. “Evaluation of Precipitation Estimates by at-Launch Codes of GPM/DPR Algorithms Using Synthetic Data from TRMM/PR Observations.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7, no. 9 (2014): 3931–3944. doi:10.1109/jstars.2014.2320960.

Hamada, A., and Y. N. Takayabu. “Improvements in Detection of Light Precipitation with the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM DPR).” Journal of Atmospheric and Oceanic Technology 33, no. 4 (2016): 653–667. doi:10.1175/jtech-d-15-0097.1.

Awaka, J., M. Le, V. Chandrasekar, N. Yoshida, T. Higashiuwatoko, T. Kubota, and T. Iguchi. “Rain Type Classification Algorithm Module for GPM Dual-Frequency Precipitation Radar.” Journal of Atmospheric and Oceanic Technology 33, no. 9 (2016): 1887–1898. doi:10.1175/jtech-d-16-0016.1.

Seto, S., and T. Iguchi. “Applicability of the Iterative Backward Retrieval Method for the GPM Dual-Frequency Precipitation Radar.” IEEE Transactions on Geoscience and Remote Sensing 49, no. 6 (2011): 1827–1838. doi:10.1109/tgrs.2010.2102766.

Watters, D., A. Battaglia, K. Mroz, and F. Tridon. “Validation of the GPM Version-5 Surface Rainfall Products over Great Britain and Ireland.” Journal of Hydrometeorology 19, no. 10 (2018): 1617–1636. doi:10.1175/jhm-d-18-0051.1.

Seto, S., T. Iguchi, and T. Oki. "The basic performance of a precipitation retrieval algorithm for the global precipitation measurement mission's single/dual-frequency radar measurements." IEEE Transactions on Geoscience and Remote Sensing 51, no. 12 (2013): 5239-5251. doi:10.1109/TGRS.2012.2231686.

Tokay, A., L. P. D’Adderio, F. Porcù, D. B. Wolff, and W. A. Petersen. “A Field Study of Footprint-Scale Variability of Raindrop Size Distribution.” Journal of Hydrometeorology 18, no. 12 (2017): 3165–3179. doi:10.1175/jhm-d-17-0003.1.

Le, M., and V. Chandrasekar. “An Algorithm for Drop-Size Distribution Retrieval from GPM Dual-Frequency Precipitation Radar.” IEEE Transactions on Geoscience and Remote Sensing 52, no. 11 (2014): 7170–7185. doi:10.1109/tgrs.2014.2308475.

Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, P. Xie, and S. H. Yoo. "NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG)." Algorithm Theoretical Basis Document (ATBD) Version 4 (2015): 26.

Yusnaini, H., and. Marzuki. “Vertical Distribution of Radar Reflectivity Factor in Intense Convective Clouds over Indonesia.” KnE Engineering 1, no. 2 (2019): 141-147. doi:10.18502/keg.v1i2.4439.

Marzuki, H. Hashiguchi, M. Vonnisa, and Harmadi. “Seasonal and Diurnal Variations of Vertical Profile of Precipitation over Indonesian Maritime Continent.” Engineering and Mathematical Topics in Rainfall (April 18, 2018): 71. doi:10.5772/intechopen.74044.

Rulfová, Zuzana, and Jan Kyselý. “Disaggregating Convective and Stratiform Precipitation from Station Weather Data.” Atmospheric Research 134 (2013): 100–115. doi:10.1016/j.atmosres.2013.07.015.

Rosenfeld, D., and C. W. Ulbrich. “Cloud Microphysical Properties, Processes, and Rainfall Estimation Opportunities.” Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. American Meteorolgy Society. (2003): 237–258. doi:10.1007/978-1-878220-36-3_10.

Marzuki, H. Hashiguchi, T. Shimomai, I. Rahayu, M. Vonnisa, and Afdal. “Performance Evaluation of Micro Rain Radar over Sumatra through Comparison with Disdrometer and Wind Profiler.” Progress In Electromagnetics Research M 50 (2016): 33–46. doi:10.2528/pierm16072808.

Wang, H., H. Lei, and J. Yang. “Microphysical Processes of a Stratiform Precipitation Event over Eastern China: Analysis Using Micro Rain Radar Data.” Advances in Atmospheric Sciences 34, no. 12 (2017): 1472–1482. doi:10.1007/s00376-017-7005-6.

Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber. "Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis." Journal of the atmospheric sciences 60, no. 2 (2003): 354-365. doi:10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.

Zhang, Aoqi, and Yunfei Fu. "The structural characteristics of precipitation cases detected by dual-frequency radar of GPM satellite." Chin. J. Atmos. Sci 42 (2018): 33-51.

Kumar, S., and G. S. Bhat. “Vertical Profiles of Radar Reflectivity Factor in Intense Convective Clouds in the Tropics.” Journal of Applied Meteorology and Climatology 55, no. 5 (2016): 1277–1286. doi:10.1175/jamc-d-15-0110.1.

Chen, H., P. M. Rizzoli, T.Y. Koh, and G. Song. “The Relative Importance of the Wind-Driven and Tidal Circulations in Malacca Strait.” Continental Shelf Research 88 (2014): 92–102. doi:10.1016/j.csr.2014.07.012.

Full Text: PDF

DOI: 10.28991/esj-2021-01274


  • There are currently no refbacks.

Copyright (c) 2021 Ravidho Ramadhan, Marzuki Marzuki, Harmardi Harmardi