Identification of Sickle Cell Anemia Using Deep Neural Networks

Sagar Yeruva, M. Sharada Varalakshmi, B. Pavan Gowtham, Y. Hari Chandana, PESN. Krishna Prasad


A molecule called hemoglobin is found in red blood cells that holds oxygen all over the body. Hemoglobin is elastic, round, and stable in a healthy human. This makes it possible to float across red blood cells. But the composition of hemoglobin is unhealthy if you have sickle cell disease. It refers to compact and bent red blood cells. The odd cells obstruct the flow of blood. It is dangerous and can result in severe discomfort, organ damage, heart strokes, and other symptoms. The human life expectancy can be shortened as well. The early identification of sickle calls will help people recognize signs that can assist antibiotics, supplements, blood transfusion, pain-relieving medications, and treatments etc. The manual assessment, diagnosis, and cell count are time consuming process and may result in misclassification and count since millions of red blood cells are in one spell. When utilizing data mining techniques such as the multilayer perceptron classifier algorithm, sickle cells can be effectively detected with high precision in the human body. The proposed approach tackles the limitations of manual research by implementing a powerful and efficient MLP (Multi-Layer Perceptron) classification algorithm that distinguishes Sickle Cell Anemia (SCA) into three classes: Normal (N), Sickle Cells(S) and Thalassemia (T) in red blood cells. This paper also presents the precision degree of the MLP classifier algorithm with other popular mining and machine learning algorithms on the dataset obtained from the Thalassemia and Sickle Cell Society (TSCS) located in Rajendra Nagar, Hyderabad, Telangana, India.


Doi: 10.28991/esj-2021-01270

Full Text: PDF


Anemia; Sickle Cell (SC); Sickle Cell Anemia (SCA); Sickle Cell Disease (SCD); MLP Classifier; Thalassemia.


Westerman, Maxwell, and John B. Porter. “Red Blood Cell-Derived Microparticles: An Overview.” Blood Cells, Molecules, and Diseases 59 (July 2016): 134–139. doi:10.1016/j.bcmd.2016.04.003.

Paula Tanabe, “Sickle Cell Disease core concepts for emergency physician and nurse”, Available online: (accessed on February 2021).

Stuart, Marie J, and Ronald L Nagel. “Sickle-Cell Disease.” The Lancet 364, no. 9442 (October 2004): 1343–1360. doi:10.1016/s0140-6736(04)17192-4.

Sickle cell anemia. Available online: causes/syc-20355876 (accessed on February 2021).

Serjeant, Graham R. “Sickle-Cell Disease.” The Lancet 350, no. 9079 (September 1997): 725–730. doi:10.1016/s0140-6736(97)07330-3.

Sickle Cell Disease. Available online: (accessed on January 2021).

Yawn, Barbara P., George R. Buchanan, Araba N. Afenyi-Annan, Samir K. Ballas, Kathryn L. Hassell, Andra H. James, Lanetta Jordan, et al. “Management of Sickle Cell Disease.” JAMA 312, no. 10 (September 10, 2014): 1033. doi:10.1001/jama.2014.10517.

Chy, Tajkia Saima, and Mohammad Anisur Rahaman. “A Comparative Analysis by KNN, SVM & ELM Classification to Detect Sickle Cell Anemia.” 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST) (January 2019). doi:10.1109/icrest.2019.8644410.

Data & Statistics on Sickle Cell Disease. Available online: (accessed on January 2021).

Platt, Orah S., Bruce D. Thorington, Donald J. Brambilla, Paul F. Milner, Wendell F. Rosse, Elliott Vichinsky, and Thomas R. Kinney. “Pain in Sickle Cell Disease.” New England Journal of Medicine 325, no. 1 (July 4, 1991): 11–16. doi:10.1056/nejm199107043250103.

Vichinsky, Elliott P., Lynne D. Neumayr, Ann N. Earles, Roger Williams, Evelyne T. Lennette, Deborah Dean, Bruce Nickerson, et al. “Causes and Outcomes of the Acute Chest Syndrome in Sickle Cell Disease.” New England Journal of Medicine 342, no. 25 (June 22, 2000): 1855–1865. doi:10.1056/nejm200006223422502.

Elsalamony, Hany A. “Healthy and Unhealthy Red Blood Cell Detection in Human Blood Smears Using Neural Networks.” Micron 83 (April 2016): 32–41. doi:10.1016/j.micron.2016.01.008.

Salman, Muhammad, Amer Hayat Khan, Azreen Syazril Adnan, Syed Azhar Syed Sulaiman, Khalid Hussain, Naureen Shehzadi, Muhammad Islam, and Fauziah Jummaat. “Prevalence and Management of Anemia in Pre-Dialysis Malaysian Patients: A Hospital-Based Study.” Revista Da Associação Médica Brasileira 62, no. 8 (November 2016): 742–747. doi:10.1590/1806-9282.62.08.742.

Vichinsky, Elliott, Mel Heyman, Deborah Hurst, Danny Chiu, Barbara Gaffield, Karen Thompson, Klara Kleman, and Bertram Lubin. “NUTRITION IN SICKLE CELL ANEMIA (HB SS).” Pediatric Research 18 (April 1984): 251A–251A. doi:10.1203/00006450-198404001-00946.

Pennap, Grace, and Khadijah Abubakar. “Prevalence of Anemia Among Human Immunodeficiency Virus Infected Patients Accessing Healthcare in Federal Medical Center Keffi, Nigeria.” International Journal of TROPICAL DISEASE & Health 10, no. 3 (January 10, 2015): 1–7. doi:10.9734/ijtdh/2015/19657.

Yeruva, Sagar, M. Sharada Varalakshmi, B. Pavan Gowtham, Y. Hari Chandana, and P. E. S. N. Krishna Prasad. “Sickle Cell Disease - A Comprehensive Study and Usage of Technology for Diagnosis.” International Blood Research & Reviews (June 19, 2020): 6–14. doi:10.9734/ibrr/2020/v11i230125.

Solanki, Ashokkumar Vijaysinh. "Data mining techniques using WEKA classification for sickle cell disease." International Journal of Computer Science and Information Technologies 5, no. 4 (2014): 5857-5860.

Chadha, Gulpreet Kaur, Aakarsh Srivastava, Abhilasha Singh, Ritu Gupta, and Deepanshi Singla. “An Automated Method for Counting Red Blood Cells Using Image Processing.” Procedia Computer Science 167 (2020): 769–778. doi:10.1016/j.procs.2020.03.408.

Ilyas, Shazia, Andrew Evan Simonson, and Waseem Asghar. “Emerging Point-of-Care Technologies for Sickle Cell Disease Diagnostics.” Clinica Chimica Acta 501 (February 2020): 85–91. doi:10.1016/j.cca.2019.10.025.

Hortinela, Carlos C., Jessie R. Balbin, Janette C. Fausto, Paul Daniel C.Divina, and John Philip T. Felices. “Identification of Abnormal Red Blood Cells and Diagnosing Specific Types of Anemia Using Image Processing and Support Vector Machine.” 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM) (November 2019). doi:10.1109/hnicem48295.2019.9072904.

Alzubaidi, Laith, Omran Al-Shamma, Mohammed A. Fadhel, Laith Farhan, and Jinglan Zhang. “Classification of Red Blood Cells in Sickle Cell Anemia Using Deep Convolutional Neural Network.” Intelligent Systems Design and Applications (April 12, 2019): 550–559. doi:10.1007/978-3-030-16657-1_51.

Elsalamony, Hany A. “Detection of Anaemia Disease in Human Red Blood Cells Using Cell Signature, Neural Networks and SVM.” Multimedia Tools and Applications 77, no. 12 (August 19, 2017): 15047–15074. doi:10.1007/s11042-017-5088-9.

Xu, Mengjia, Dimitrios P. Papageorgiou, Sabia Z. Abidi, Ming Dao, Hong Zhao, and George Em Karniadakis. “A Deep Convolutional Neural Network for Classification of Red Blood Cells in Sickle Cell Anemia.” Edited by Qing Nie. PLOS Computational Biology 13, no. 10 (October 19, 2017): e1005746. doi:10.1371/journal.pcbi.1005746.

Aruna, N. S., and S. Hariharan. “A Level-Set-Based Segmentation for the Detection of Megaloblastic Anemia in Red Blood Cells.” Lecture Notes in Networks and Systems (October 24, 2017): 119–128. doi:10.1007/978-981-10-5523-2_12.

Savkare, S. S., A. S. Narote, and S. P. Narote. “Automatic Blood Cell Segmentation Using K-Mean Clustering from Microscopic Thin Blood Images.” Proceedings of the Third International Symposium on Computer Vision and the Internet (September 21, 2016). doi:10.1145/2983402.2983409.

Khalaf, Mohammed, Abir Jaafar Hussain, Robert Keight, Dhiya Al-Jumeily, Paul Fergus, Russell Keenan, and Posco Tso. “Machine Learning Approaches to the Application of Disease Modifying Therapy for Sickle Cell Using Classification Models.” Neurocomputing 228 (March 2017): 154–164. doi:10.1016/j.neucom.2016.10.043.

Gowtham, Bathula Pavan, Yendluri Hari Chandana, Sagar Yeruva, M. Sharada Varalakshmi, PESN Krishna Prasad, Suman Jain, Allam Ravi Kumar Reddy, Saroja Kondaveeti, and Padma Gunda. Prediction of Anemia Disease Using Classification Methods. No. 3164. EasyChair, (2020).

Sanap, Shilpa A., Meghana Nagori, and Vivek Kshirsagar. “Classification of Anemia Using Data Mining Techniques.” Lecture Notes in Computer Science (2011): 113–121. doi:10.1007/978-3-642-27242-4_14.

Alzubaidi, Laith, Mohammed A. Fadhel, Omran Al-Shamma, Jinglan Zhang, and Ye Duan. “Deep Learning Models for Classification of Red Blood Cells in Microscopy Images to Aid in Sickle Cell Anemia Diagnosis.” Electronics 9, no. 3 (March 4, 2020): 427. doi:10.3390/electronics9030427.

Understanding of Multilayer perceptron (MLP). Available online: (accessed on February 2021).

Parvez, Mohammad K., and Sakina Niyazi. “The Genomic and Structural Organization of SARS-CoV-2: A Mutational Perspective.” SciMedicine Journal 3, no. 1 (March 1, 2021): 59–65. doi:10.28991/scimedj-2021-0301-8.

Meena, Kanak, Devendra K. Tayal, Vaidehi Gupta, and Aiman Fatima. “Using Classification Techniques for Statistical Analysis of Anemia.” Artificial Intelligence in Medicine 94 (March 2019): 138–152. doi:10.1016/j.artmed.2019.02.005.

Full Text: PDF

DOI: 10.28991/esj-2021-01270


  • There are currently no refbacks.

Copyright (c) 2021 Sagar Yeruva, Sharada Varalakshmi M, Pavan Gowtham B, Hari Chandana Y, Krishna Prasad PESN