Mechanistic Multiphysics Optimization of Catalyst Layers for High Performance PEM Fuel Cells
Downloads
The work set out to optimize the catalyst layer (CL) structure of proton exchange membrane fuel cells (PEMFCs) to maximize electrochemical performance, transport efficiency, and durability simultaneously. The coupled effects of platinum loading distribution, ionomer pathways, and porous microstructure on charge transport, oxygen diffusion, water management, and electrochemical kinetics are investigated through the development of a mechanistic multiphysics modeling framework. The model combines mass and charge conservation, Butler–Volmer reaction kinetics, and effective transport formulations to enable systematic comparison between a standard reference CL and three successively optimized architectures. The findings indicate that the optimized CL designs provide clear improvements in power density, voltage stability, oxygen transport, and electrochemically active surface utilization, while exhibiting lower ohmic losses and reduced transport resistance. Quantitative comparison with experimental data shows that the predictive accuracy improves significantly, with the root mean square error decreasing to 2.7 mAcm⁻² and the coefficient of determination increasing to 0.997 for the most developed design. Moreover, degradation-sensitive aspects, such as platinum loss and interfacial instability, are noticeably alleviated through controlled microstructural design. The main contribution of this work lies in integrating multi-parameter optimization of the catalyst layer architecture within a single mechanistic framework, offering a scalable and robust route toward high-performance.
Downloads
[1] Almaktar, M., & Shaaban, M. (2021). Prospects of renewable energy as a non-rivalry energy alternative in Libya. Renewable and Sustainable Energy Reviews, 143. doi:10.1016/j.rser.2021.110852.
[2] Cao, J., Dong, D., Wei, F., Long, W., Xiao, G., Jiang, L., Li, B., & Wang, Y. (2023). Investigation on jet controlled diffusion combustion (JCDC) mode applied on a marine large-bore two-stroke engine. Journal of Cleaner Production, 429. doi:10.1016/j.jclepro.2023.139546.
[3] Chai, S., Chang, H., Liu, W., Zhang, W., Hao, X., Sun, K., Liu, Z., Zhang, Q., & Su, R. (2026). Efficient production of bromine from low-concentration bittern using chlorine-free extraction process. Separation and Purification Technology, 382. doi:10.1016/j.seppur.2025.135871.
[4] Furze, S. F., Barraclough, S., Liu, D., & Melendi-Espina, S. (2024). Model based mapping of a novel prototype spark ignition opposed-piston engine. Energy Conversion and Management, 309. doi:10.1016/j.enconman.2024.118434.
[5] Genidy, A., Léau, M., Nelson-Gruel, D., Ketfi-Chérif, A., Von-Wissel, D., & Colin, G. (2025). Enhancing Fuel-Cell Longevity via Multi-Objective Dynamic Programming. IFAC-PapersOnLine, 59(5), 79–84. doi:10.1016/j.ifacol.2025.07.085.
[6] Gomaa, M. R., Al-Bawwat, A. K., Al-Dhaifallah, M., Rezk, H., & Ahmed, M. (2023). Optimal design and economic analysis of a hybrid renewable energy system for powering and desalinating seawater. Energy Reports, 9, 2473–2493. doi:10.1016/j.egyr.2023.01.087.
[7] Lv, Q., Lu, J., Tang, X., Hu, Y., & Yan, C. (2022). Evaluation of the moisture resistance of rubberized asphalt using BBS/UTM bonding test, TSR and HWT test. Construction and Building Materials, 340. doi:10.1016/j.conbuildmat.2022.127831.
[8] Pan, Z., Wang, J., Zhu, L., Duan, C., Jiao, Z., Zhong, Z., O’Hayre, R., & Sullivan, N. P. (2025). Performance and stability of renewable fuel production via H2O electrolysis and H2O–CO2 co-electrolysis using proton-conducting solid oxide electrolysis cells. Applied Energy, 385. doi:10.1016/j.apenergy.2025.125571.
[9] Tayyeban, E., Deymi-Dashtebayaz, M., & Farzaneh-Gord, M. (2024). Multi-objective optimization for reciprocating expansion engine used in compressed air energy storage (CAES) systems. Energy, 288. doi:10.1016/j.energy.2023.129869.
[10] Wang, S., & Zhang, F. (2023). Quantitative analysis of heat transfer characteristics and advantages in opposed-piston 2-stroke diesel engines. Case Studies in Thermal Engineering, 51. doi:10.1016/j.csite.2023.103629.
[11] Windarto, C., Setiawan, A., Duy, N. H. X., & Lim, O. (2023). Investigation of propane direct injection performance in a rapid compression and expansion machine: Pathways to diesel marine engine efficiency parity with spark discharge duration strategies. International Journal of Hydrogen Energy, 48(87), 33960–33980. doi:10.1016/j.ijhydene.2023.05.131.
[12] Li, B., Wu, Z., Li, Y., He, J., Wang, B., Jiao, K., Hu, X., Fan, H., & Wu, J. (2025). Thermal-water-electrical coupling modeling of PEMFC and its dynamic performance analysis under different operating conditions. Applied Energy, 398. doi:10.1016/j.apenergy.2025.126447.
[13] Owejan, J. P., Gagliardo, J. J., Sergi, J. M., Kandlikar, S. G., & Trabold, T. A. (2009). Water management studies in PEM fuel cells, Part I: Fuel cell design and in situ water distributions. International Journal of Hydrogen Energy, 34(8), 3436–3444. doi:10.1016/j.ijhydene.2008.12.100.
[14] Shahgaldi, S., Alaefour, I., Unsworth, G., & Li, X. (2017). Development of a low temperature decal transfer method for the fabrication of proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 42(16), 11813–11822. doi:10.1016/j.ijhydene.2017.02.127.
[15] Wang, Z., Liao, P., Long, F., Wang, Z., Ji, Y., & Han, F. (2025). Maritime electrification pathways for sustainable shipping: Technological advances, environmental drivers, challenges, and prospects. eTransportation, 26, 100462. doi:10.1016/j.etran.2025.100462.
[16] Alrwashdeh, S. S., Markötter, H., Haußmann, J., Scholta, J., Hilger, A., & Manke, I. (2016). X-ray tomographic investigation of water distribution in polymer electrolyte membrane fuel cells with different gas diffusion media. ECS Meeting Abstracts, 1, 101–101. doi:10.1149/ma2016-01/1/101.
[17] Yang, J., Chen, L., Wu, X., Deng, P., Xue, F., Xu, X., Wang, W., & Hu, H. (2025). Remaining useful life prediction of vehicle-oriented PEMFCs based on seasonal trends and hybrid data-driven models under real-world traffic conditions. Renewable Energy, 249. doi:10.1016/j.renene.2025.123193.
[18] Yong, Z., Shirong, H., Xiaohui, J., Mu, X., Yuntao, Y., & Xi, Y. (2023). Three-dimensional simulation of large-scale proton exchange membrane fuel cell considering the liquid water removal characteristics on the cathode side. International Journal of Hydrogen Energy, 48(27), 10160–10179. doi:10.1016/j.ijhydene.2022.11.343.
[19] Zenyuk, I. V., Parkinson, D. Y., Connolly, L. G., & Weber, A. Z. (2016). Gas-diffusion-layer structural properties under compression via X-ray tomography. Journal of Power Sources, 328, 364–376. doi:10.1016/j.jpowsour.2016.08.020.
[20] Fu, H., Kong, F., Wu, F., Shen, J., & Zhang, Y. (2025). Efficient thermoelectric and humidification management of integrated PEMFC systems under zone economic model predictive control. Sustainable Energy Technologies and Assessments, 82. doi:10.1016/j.seta.2025.104480.
[21] Hou, Q., Ge, P., Lu, G., & Zhang, H. (2022). A novel PEMFC-CHP system for methanol reforming as fuel purified by hydrogen permeation alloy membrane. Case Studies in Thermal Engineering, 36. doi:10.1016/j.csite.2022.102176.
[22] Alaefour, I., Shahgaldi, S., Zhao, J., & Li, X. (2021). Synthesis and Ex-Situ characterizations of diamond-like carbon coatings for metallic bipolar plates in PEM fuel cells. International Journal of Hydrogen Energy, 46(19), 11059–11070. doi:10.1016/j.ijhydene.2020.09.259.
[23] Alrwashdeh, S. S. (2018). Assessment of the energy production from PV racks based on using different solar canopy form factors in Amman-Jordan. International Journal of Engineering Research and Technology, 11(10), 1595–1603.
[24] Alrwashdeh, S. S. (2018). Predicting of energy production of solar tower based on the study of the cosine efficiency and the field layout of heliostats. International Journal of Mechanical Engineering and Technology, 9(11), 250–257.
[25] Alrwashdeh, S. S. (2018). Assessment of photovoltaic energy production at different locations in Jordan. International Journal of Renewable Energy Research, 8(2), 797–804. doi:10.20508/ijrer.v8i2.7337.g7368.
[26] Al-Raqeb, H., Ghaffar, S. H., Al-Kheetan, M. J., & Chougan, M. (2023). Understanding the challenges of construction demolition waste management towards circular construction: Kuwait Stakeholder’s perspective. Cleaner Waste Systems, 4. doi:10.1016/j.clwas.2023.100075.
[27] Colombo, E., Grimaldi, A., Baricci, A., Pak, M., Morimoto, Y., Zenyuk, I. V., & Casalegno, A. (2025). In-plane redistribution of radical scavenger during PEMFC real-world automotive operation and impact on catalyst-layer local oxygen transport resistance. Journal of Power Sources, 629. doi:10.1016/j.jpowsour.2024.235962.
[28] Sapnken, F. E., Wang, Y., Posso, F., Xie, N., Noumo, P. G., Ntegmi, G. J. B., Molu, R. J. J., & Tamba, J. G. (2025). A novel fractional-order heuristic grey model for robust prognostics of PEMFC degradation under static and dynamic operating regimes. Energy 360, 4, 100046. doi:10.1016/j.energ.2025.100046.
[29] Feng, P., Li, Z., Liu, L., Tan, L., & Zhang, Y. (2026). Improving PEMFC performance with gradient porosity GDL designs: A multiscale simulation study. Renewable Energy, 256. doi:10.1016/j.renene.2025.124467.
[30] Huang, Z., An, Z., Yang, D., Zhang, D., & Ding, Y. (2025). Effect of emulsification of catalyst ink on the structure of catalyst layer in PEMFC. International Journal of Hydrogen Energy, 183. doi:10.1016/j.ijhydene.2025.151830.
[31] Li, W., Wang, Y., Li, X., Zhou, X., Liu, L., Li, X., Jiang, X., Xiong, C., Chen, Y., & You, F. (2025). Effect of N2 ratio on the conductivity and corrosion resistance of TiN/TaN coating on TC4 bipolar plates for PEMFC. Materials Today Communications, 42. doi:10.1016/j.mtcomm.2024.111415.
[32] Chowdury, M. S. K., Park, S. B., & Park, Y. il. (2026). Synergistic acid–base interactions enabling stable proton transfer in PEMFCs: insights from simulations and experiments. Applied Surface Science, 720. doi:10.1016/j.apsusc.2025.165152.
[33] Than, S. T. M., Lin, K. A., & Mon, M. S. (2008). Heat exchanger design. World Academy of Science, Engineering and Technology, 46, 604-611.
[34] Li, R., Yue, T., Li, G., Gao, J., Tong, Y., Cheng, S., Li, G., Hou, C., & Su, W. (2024). Global trends on NH3-SCR research for NOx control during 1994–2023: A bibliometric analysis. Journal of the Energy Institute, 117. doi:10.1016/j.joei.2024.101865.
[35] Li, T., Bao, Z., Yao, R., Pan, X., Bai, F., Peng, Z., Jiao, K., & Liu, Z. (2025). Two-phase flow in the gas diffusion layer with different perforation of proton exchange membrane fuel cell. International Journal of Green Energy, 22(6), 1063–1071. doi:10.1080/15435075.2024.2347269.
[36] Li, Y., Liu, S., Chen, L., Kang, Z., & Zhao, M. (2025). Thermal control system design and thermal test of high-resolution space camera. Case Studies in Thermal Engineering, 75, 107135. doi:10.1016/j.csite.2025.107135.
[37] Yang, C., Qi, L., Tian, W., Chao, X., & Ge, J. (2023). Effect of short carbon fibers on the thermal conductivities of Csf/AZ91D composites. Journal of Alloys and Compounds, 942. doi:10.1016/j.jallcom.2023.168988.
[38] Yang, W., Pan, Z., Jiao, Z., Zhong, Z., & O’Hayre, R. (2025). Advanced microstructure characterization and microstructural evolution of porous cermet electrodes in solid oxide cells: A comprehensive review. Energy Reviews, 4(1), 100104. doi:10.1016/j.enrev.2024.100104.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















