Data Governance Meets Generative Artificial Intelligence: Towards A Unified Organizational Framework
Downloads
As technology continues to evolve, organizations face growing and complex challenges and opportunities that affect their ability to govern, manage and harness data as a key source of competitive advantage. Equally, data are considered a powerful and unique source of success for organizations, which in turn, can impact their decision-making capabilities and play a critical role in their success. Hence, this article aims to provide a detailed identification, analysis and discussion over the current data governance context and its existing frameworks, highlighting their commonalities, differences and gaps, including ones related to data governance relationship with Generative Artificial Intelligence (GenAI). This article conducts an extensive methodological and in-depth analysis over a set of sixteen data governance frameworks based on different key data governance attributes, denoting that although there are numerous frameworks, they hold weaknesses, limitations and challenges which prevent them from being capable of incorporating and governing the use and management of AI, particularly the demands originating from GenAI. Our findings provide and propose a new and enhanced data governance framework which integrates the best features and ideas from the existing ones and initiatives derived from the advancements and particularities of AI and GenAI models, systems, and overall usage.
Downloads
[1] Bennett, S. (2015). Why information governance needs top-down leadership. Governance Directions, 67(May), 207–213.
[2] Macfeely, S., Me, A., Fu, H., Veerappan, M., Hereward, M., Passarelli, D., & Schüür, F. (2022). Towards an international data governance framework. Statistical Journal of the IAOS, 38(3), 703–710. doi:10.3233/SJI-220038.
[3] Scholz, N., Wieland, J., & Schäffer, T. (2022). Towards a Framework for Enterprise & Platform Ecosystem Data Governance. 28th Americas Conference on Information Systems, AMCIS 2022.
[4] Ragan, R., & Strasser, T. (2020). Understanding the how and why of CU data governance. Credit Union TIMES, 31, 10–10.
[5] Hoppszallern, S. (2015). Governance strategies can determine success of IT projects. H&HN: Hospitals & Health Networks, 89, 20.
[6] Lis, D., & Otto, B. (2020). Data governance in data ecosystems - Insights from organizations. In 26th Americas Conference on Information Systems, AMCIS 2020.
[7] Joshi, D., Pratik, S., & Rao, M. P. (2021). Data governance in data mesh infrastructures: The Saxo bank case study. Proceedings of the International Conference on Electronic Business (ICEB), 21, 599–604.
[8] Kanying, T., Thammaboosadee, S., & Chuckpaiwong, R. (2023). Formulating Analytical Governance Frameworks: An Integration of Data and AI Governance Approaches. ACM International Conference Proceeding Series, 1–9. doi:10.1145/3628454.3628461.
[9] Mäntymäki, M., Minkkinen, M., Birkstedt, T., & Viljanen, M. (2022). Defining organizational AI governance. AI and Ethics, 2(4), 603–609. doi:10.1007/s43681-022-00143-x.
[10] Dutta, A. (2016). Ensuring the Quality of Data in Motion: The Missing Link in Data Governance. Computer Weekly, 1–4.
[11] Nokkala, T., Salmela, H., & Toivonen, J. (2019). Data governance in digital platforms. In Proceedings of the Twenty‑Eighth Americas Conference on Information Systems (AMCIS), Minneapolis, United States.
[12] Zorrilla, M., & Yebenes, J. (2022). A reference framework for the implementation of data governance systems for industry 4.0. Computer Standards and Interfaces, 81, 103595. doi:10.1016/j.csi.2021.103595.
[13] Ligot, D. V. (2024). AI Governance: A Framework for Responsible AI Development. In SSRN Electronic Journal. doi:10.2139/ssrn.4817726.
[14] Baum, K., Bryson, J., Dignum, F., Dignum, V., Grobelnik, M., Hoos, H., Irgens, M., Lukowicz, P., Muller, C., Rossi, F., Shawe-Taylor, J., Theodorou, A., & Vinuesa, R. (2023). From fear to action: AI governance and opportunities for all. Frontiers in Computer Science, 5. doi:10.3389/fcomp.2023.1210421.
[15] Cugurullo, F., & Xu, Y. (2025). When AIs become oracles: Generative artificial intelligence, anticipatory urban governance, and the future of cities. Policy and Society, 44(1), 98–115. doi:10.1093/polsoc/puae025.
[16] Benfeldt, O., Persson, J. S., & Madsen, S. (2020). Data governance as a collective action problem. Information Systems Frontiers, 22(2), 299-313. doi:10.1007/s10796-019-09923-z.
[17] Boppiniti, S. (2018). Unraveling the Complexities of Healthcare Data Governance: Strategies, Challenges, and Future Directions. Transactions on Latest Trends in IoT, 1(1), 73–89.
[18] Rascao, J. P. (2021). Data Governance in the Digital Age. Handbook of Research on Digital Transformation and Challenges to Data Security and Privacy, IGI Global, 34–62. doi:10.4018/978-1-7998-4201-9.ch003.
[19] Paredes, D. (2016). The six steps to become a successful CDO. CIO, (13284045), 4.
[20] Gardner, K., Olney, S., & Dickinson, H. (2018). Getting smarter with data: Understanding tensions in the use of data in assurance and improvement-oriented performance management systems to improve their implementation. Health Research Policy and Systems, 16(1), 125. doi:10.1186/s12961-018-0401-2.
[21] Hikmawati, S., Santosa, P. I., & Hidayah, I. (2021). Improving Data Quality and Data Governance Using Master Data Management: A Review. International Journal of Information Technology and Electrical Engineering, 5(3), 90. doi:10.22146/ijitee.66307.
[22] Lam, K., Iqbal, F. M., Purkayastha, S., & Kinross, J. M. (2021). Investigating the ethical and data governance issues of artificial intelligence in surgery: Protocol for a Delphi study. JMIR Research Protocols, 10(2), 26552. doi:10.2196/26552.
[23] Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & Janowski, T. (2020). Data governance: Organizing data for trustworthy Artificial Intelligence. Government Information Quarterly, 37(3). doi:10.1016/j.giq.2020.101493.
[24] Cheong, L. K., & Chang, V. (2007). The need for data governance: A case study. ACIS 2007 Proceedings - 18th Australasian Conference on Information Systems, 999–1008.
[25] Chakravorty, R. (2020). Common challenges of data governance. Journal of Securities Operations & Custody, 13(1), 23. doi:10.69554/gaku4007.
[26] Sifter, C. J. (2017). Establishing a data governance center of excellence within your bank. New Jersey Banker, 24–25.
[27] Liu, K., Deng, Z., & Zhang, M. (2023). Research on Capability Maturity Evaluation Model of Power Grid Data Management. Procedia Computer Science, 228, 1030–1037. doi:10.1016/j.procs.2023.11.135.
[28] Coche, E., Kolk, A., & Ocelík, V. (2024). Unravelling cross-country regulatory intricacies of data governance: the relevance of legal insights for digitalization and international business. Journal of International Business Policy, 7(1), 112–127. doi:10.1057/s42214-023-00172-1.
[29] Milne, R., & Brayne, C. (2020). We need to think about data governance for dementia research in a digital era. Alzheimer’s Research and Therapy, 12(1), 1–3. doi:10.1186/s13195-020-0584-y.
[30] Sanchez, S. C., Hakim, G. J., & Saenger, C. P. (2021). Climate model teleconnection patterns govern the niño-3.4 response to early nineteenth-century volcanism in coral-based data assimilation reconstructions. Journal of Climate, 34(5), 1863–1880. doi:10.1175/JCLI-D-20-0549.1.
[31] Al-Ruithe, M., Benkhelifa, E., & Hameed, K. (2019). A systematic literature review of data governance and cloud data governance. Personal and Ubiquitous Computing, 23(5–6), 839–859. doi:10.1007/s00779-017-1104-3.
[32] Abraham, R., Schneider, J., & Vom Brocke, J. (2019). Data governance: A conceptual framework, structured review, and research agenda. International Journal of Information Management, 49, 424–438. doi:10.1016/j.ijinfomgt.2019.07.008.
[33] Alhassan, I., Sammon, D., & Daly, M. (2016). Data governance activities: an analysis of the literature. Journal of Decision Systems, 25, 64–75. doi:10.1080/12460125.2016.1187397.
[34] Hay, J. (2014). Data governance gamification. Business Intelligence Journal, 19(1), 30-35.
[35] Khatri, V., & Brown, C. V. (2010). Designing data governance. Communications of the ACM, 53(1), 148–152. doi:10.1145/1629175.1629210.
[36] Kim, H. Y., & Cho, J. S. (2018). Data governance framework for big data implementation with NPS Case Analysis in Korea. Journal of Business and Retail Management Research, 12(3), 36–46. doi:10.24052/jbrmr/v12is03/art-04.
[37] Mao, Z., Wu, J., Qiao, Y., & Yao, H. (2022). Government data governance framework based on a data middle platform. ASLIB Journal of Information Management, 74(2), 289–310. doi:10.1108/AJIM-03-2021-0068.
[38] Okoro, R. (2021). Proposed Data Governance Framework for Small and Medium Scale Enterprises (SMES). All Graduate Theses, Dissertations, and Other Capstone Projects, 1–48.
[39] Yebenes Serrano, J., & Zorrilla, M. (2021). A Data Governance Framework for Industry 4.0. IEEE Latin America Transactions, 19(12), 2130–2138. doi:10.1109/TLA.2021.9480156.
[40] Yang, L., Li, J., Elisa, N., Prickett, T., & Chao, F. (2019). Towards Big data Governance in Cybersecurity. Data-Enabled Discovery and Applications, 3(1), 10. doi:10.1007/s41688-019-0034-9.
[41] Fothergill, B. T., Knight, W., Stahl, B. C., & Ulnicane, I. (2019). Responsible data governance of neuroscience big data. Frontiers in Neuroinformatics, 13. doi:10.3389/fninf.2019.00028.
[42] Effoduh, J. O., Akpudo, U. E., & Kong, J. D. (2024). Toward a trustworthy and inclusive data governance policy for the use of artificial intelligence in Africa. Data and Policy, 6, 34. doi:10.1017/dap.2024.26.
[43] Chen, S. Y. (2023). Generative AI, learning and new literacies. Journal of Educational Technology Development and Exchange, 16(2), 1–19. doi:10.18785/jetde.1602.01.
[44] Meyers, C. (2014). How Data Management and Governance Can Enable Successful Self-Service BI. Business Intelligence Journal, 19(4), 23–27.
[45] Bordey, G. (2018). Agile in Data Governance Design. Business Intelligence Journal, 23(2), 23–32.
[46] Burniston, T. R. (2015). Data Governance: A regulatory and Business Imperative. American Bankers Association. ABA Banking Journal, 107(4), 56.
[47] Vilminko-Heikkinen, R., & Pekkola, S. (2019). Changes in roles, responsibilities and ownership in organizing master data management. International Journal of Information Management, 47, 76–87. doi:10.1016/j.ijinfomgt.2018.12.017.
[48] Minkkinen, M., & Mantymaki, M. (2023). Discerning Between the “Easy” and “Hard” Problems of AI Governance. IEEE Transactions on Technology and Society, 4(2), 188–194. doi:10.1109/TTS.2023.3267382.
[49] Liza, F. F. (2022). Challenges of Enforcing Regulations in Artificial Intelligence Act: Analyzing Quantity Requirement in Data and Data Governance. Proceedings of the 2022 1st International Workshop on Imagining the AI Landscape after the AI Act: In conjunction with the first International Conference on Hybrid Human-Artificial Intelligence. CEUR-WS, 3221, 9.
[50] Narne, H. (2024). Generative Artificial Intelligence Device to analysis the data for SAP based Data Management. Intelligent Computing and Emerging Communication Technologies, ICEC 2024, 1–6. doi:10.1109/ICEC59683.2024.10837215.
[51] Chinta, S. (2019). The role of generative AI in oracle database automation: Revolutionizing data management and analytics. World Journal of Advanced Research and Reviews, 4(1), 054–063. doi:10.30574/wjarr.2019.4.1.0075.
[52] Janssen, M. (2025). Responsible governance of generative AI: Conceptualizing GenAI as complex adaptive systems. Policy and Society, 44(1), 38–51. doi:10.1093/polsoc/puae040.
[53] Ciriello, R. F., Chen, A. Y., & Rubinsztein, Z. A. (2025). Compassionate AI Design, Governance, and Use. IEEE Transactions on Technology and Society, 6(3), 270–275. doi:10.1109/TTS.2025.3538125.
[54] Fui-Hoon Nah, F., Zheng, R., Cai, J., Siau, K., & Chen, L. (2023). Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. Journal of Information Technology Case and Application Research, 25(3), 277–304. doi:10.1080/15228053.2023.2233814.
[55] Shi, Y. (2023). Study on security risks and legal regulations of generative artificial intelligence. Science of Law Journal, 2(11), 17–23. doi:10.23977/law.2023.021104.
[56] Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Quarterly: Management Information Systems, 28(1), 75–105. doi:10.2307/25148625.
[57] Ostrowski, Ł., Helfert, M., & Xie, S. (2012). A conceptual framework to construct an artefact for meta-abstract design knowledge in design science research. Proceedings of the Annual Hawaii International Conference on System Sciences, 4074–4081. doi:10.1109/HICSS.2012.51.
[58] Baskerville, R., Baiyere, A., Gregor, S., Hevner, A., & Rossi, M. (2018). Design science research contributions: Finding a balance between artifact and theory. Journal of the Association for Information Systems, 19(5), 358–376. doi:10.17705/1jais.00495.
[59] Kurniawan, D. H., Ruldeviyani, Y., Adrian, M. R., Handayani, S., Pohan, M. R., & Rani Khairunnisa, T. (2019). Data Governance Maturity Assessment: A Case Study in IT Bureau of Audit Board. Proceedings of 2019 International Conference on Information Management and Technology, ICIMTech 2019, 629–634. doi:10.1109/ICIMTech.2019.8843742.
[60] Bindley, P. (2019). Joining the dots: how to approach compliance and data governance. Network Security, 2019(2), 14–16. doi:10.1016/S1353-4858(19)30023-6.
[61] ISO. (2005). International Organization for Standardization ISO/IEC 25000:2005, Software Engineering - Software Product Quality Requirements and Evaluation (SQuaRE). ISO, Geneva, Switzerland.
[62] ISO. (2016). ISO 8000‑61:2016: Data quality — Part 61: Data quality management: Process reference model. ISO, Geneva, Switzerland. Available online: https://www.iso.org/standard/63086.html (accessed on January 2026).
[63] ISO. (2017). ISO/IEC 38505 1:2017: Information technology — Governance of IT — Governance of data — Part 1: Application of ISO/IEC 38500 to the governance of data. ISO, Geneva, Switzerland.
[64] ISO. (2018). ISO/IEC TR 38505‑2:2018: Information technology — Governance of IT — Governance of data — Part 2: Implications of ISO/IEC 38505‑1 for data management. ISO, Geneva, Switzerland.
[65] Rafique, I., Lew, P., Abbasi, M. Q., & Li, Z. (2012). Information Quality Evaluation Framework: Extending ISO 25012 Data Quality Model. International Journal of Computer, Electrical, Automation, Control and Information Engineering, 6(5), 568–573. doi:10.5281/zenodo.1072956.
[66] Harper, J. (2020). The centerpiece of data governance: Making information quality pay off. KM World, 29, 6–8.
[67] Clarke, N. (2019). How to ensure provision of accurate data to enhance decision-making. Journal of Securities Operations & Custody, 11(2), 112. doi:10.69554/tkla5594.
[68] Schmuck, M. (2024). Cultivating Data Observability As the Next Frontier of Data Engineering: a Path To Enhanced Data Quality, Transparency, and Data Governance in the Digital Age. Journal of Public Administration, Finance and Law, 30, 212–224. doi:10.47743/jopafl-2023-30-19.
[69] Belghith, O., Skhiri, S., Zitoun, S., & Ferjaoui, S. (2021). A Survey of Maturity Models in Data Management. Proceedings of 2021 IEEE 12th International Conference on Mechanical and Intelligent Manufacturing Technologies, ICMIMT 2021, 298–309. doi:10.1109/ICMIMT52186.2021.9476197.
[70] Wakunuma, K., & Eke, D. (2024). Africa, ChatGPT, and Generative AI Systems: Ethical Benefits, Concerns, and the Need for Governance. Philosophies, 9(3), 80. doi:10.3390/philosophies9030080.
[71] Ruohonen, J., & Mickelsson, S. (2023). Reflections on the Data Governance Act. Digital Society, 2(1), 10. doi:10.1007/s44206-023-00041-7.
[72] Bernardo, B. (2022). Artificial Intelligence and Digital Forensics on Data Governance Breaking Through its Importance to Organizations and its Operations. In Forensic Science & Addiction Research, 5(4). doi:10.31031/fsar.2022.05.000625.
[73] Lancaster, J., Ledford, L., & Stephens, J. (2019). Structure your data governance. Business Officer, 52, 19.
[74] Lee, A. P. (2019). Why data governance should be part of your boardroom conversations. NACD Directorship Magazine, 45, 68–68.
[75] Johnston, M. (2016). Are you prepared for your next data disaster. NetworkWorld Asia, 13(2), 52-52.
[76] Zhang, P., Zhao, K., & Kumar, R. L. (2016). Impact of IT Governance and IT Capability on Firm Performance. Information Systems Management, 33(4), 357–373. doi:10.1080/10580530.2016.1220218.
[77] Cerrillo-Martínez, A., & Casadesús-De-mingo, A. (2021). Data governance for public transparency. Profesional de La Informacion, 30(4), 1–13. doi:10.3145/EPI.2021.JUL.02.
[78] Ferrari, F., van Dijck, J., & van den Bosch, A. (2025). Observe, inspect, modify: Three conditions for generative AI governance. New Media and Society, 27(5), 2788–2806. doi:10.1177/14614448231214811.
[79] Nastoska, A., Jancheska, B., Rizinski, M., & Trajanov, D. (2025). Evaluating Trustworthiness in AI: Risks, Metrics, and Applications Across Industries. Electronics (Switzerland), 14(13), 2717. doi:10.3390/electronics14132717.
[80] Amendi, R., Halim, E., & Hartono, H. (2024). Exploring Ethical Implications: Unraveling Factors Influencing Data Governance Awareness Behavior in Generative AI Chatbot. Proceedings - 2024 2nd International Conference on Technology Innovation and Its Applications, ICTIIA 2024, 1–6. doi:10.1109/ICTIIA61827.2024.10761290.
[81] Malacaria, S., Grimaldi, M., Greco, M., & Mauro, A. De. (2023). Business Talk: Harnessing Generative AI with Data Analytics Maturity. International Journal on Cybernetics & Informatics, 12(7), 01–10. doi:10.5121/ijci.2023.120701.
[82] Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J. W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). Comment: The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3, 160018. doi:10.1038/sdata.2016.18.
[83] Cronholm, S., & Göbel, H. (2016). Evaluation of the Information Systems Research Framework: Empirical Evidence from a Design Science Research Project. The Electronic Journal Information Systems Evaluation, 19(3), 158.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















