Data Governance Meets Generative Artificial Intelligence: Towards A Unified Organizational Framework

Data Governance Data Governance Frameworks and Tools Artificial Intelligence Generative Artificial Intelligence Data Management and Quality Data Assurance

Authors

Downloads

As technology continues to evolve, organizations face growing and complex challenges and opportunities that affect their ability to govern, manage and harness data as a key source of competitive advantage. Equally, data are considered a powerful and unique source of success for organizations, which in turn, can impact their decision-making capabilities and play a critical role in their success. Hence, this article aims to provide a detailed identification, analysis and discussion over the current data governance context and its existing frameworks, highlighting their commonalities, differences and gaps, including ones related to data governance relationship with Generative Artificial Intelligence (GenAI). This article conducts an extensive methodological and in-depth analysis over a set of sixteen data governance frameworks based on different key data governance attributes, denoting that although there are numerous frameworks, they hold weaknesses, limitations and challenges which prevent them from being capable of incorporating and governing the use and management of AI, particularly the demands originating from GenAI. Our findings provide and propose a new and enhanced data governance framework which integrates the best features and ideas from the existing ones and initiatives derived from the advancements and particularities of AI and GenAI models, systems, and overall usage.