The Impact of Climate-Smart Technology Adoption on Agricultural Productivity and Environmental Sustainability
Downloads
This study provides an empirical assessment of emerging opportunities and offers a conceptual framework for understanding the potential impacts of climate-smart agriculture (CSA) adoption on agricultural productivity and environmental sustainability. Focusing on Uzbekistan, the research employs quantitative analysis of farm-level data, adoption gradient modeling, and return-on-investment (ROI) estimation to examine how CSA technologies influence key farm-level outcomes, including yields, income, resource-use efficiency (RUE), soil erosion, and water quality under world constraints. In cotton-wheat systems, the usage of six or more CSA is associated with a 71% increase in farm income, a 43% rise in crop yields, and a 48% improvement in resource-use efficiency (RUE), compared to farms with low levels of CSA usage. Fertilizer micro-dosing is associated with an average increase in cotton yields of 245.8 kg ha⁻¹ yr⁻¹ and delivers a ROI of 456%. Multivariate regression models account for 57.3% of the variation in yield and 61.8% in farm income, underscoring the explanatory power of CSA adoption patterns. Comparative analyses demonstrate that organic matter-based practices consistently outperform capital-intensive alternatives in both economic and environmental terms. The methodological approach integrates monitoring, reporting, and verification (MRV) indicators, payback period estimations, and threshold analyses tailored to risk-sensitive smallholder contexts. The findings provide robust empirical support for evidence-informed CSA policy formulation, including the design of targeted subsidies, extension services, and investment strategies in Uzbekistan. By reconciling global CSA implementation paradigms with localized constraints, the study generates scalable and empirically validated approaches, offering methodological relevance for analogous agroecological and institutional contexts.
Downloads
[1] Muska, A., Pilvere, I., & Nipers, A. (2025). European Green Deal Objective for Sustainable Agriculture: Opportunities and Challenges to Reduce Pesticide Use. Emerging Science Journal, 9(4), 1774–1791. doi:10.28991/ESJ-2025-09-04-02.
[2] Wheeler, T., & von Braun, J. (2013). Climate Change Impacts on Global Food Security. Science, 341(6145), 508–513. doi:10.1126/science.1239402.
[3] IPCC. (2023). Climate Change 2022 – Impacts, Adaptation and Vulnerability. Intergovernmental Panel on Climate Change (IPCC): Cambridge University Press, Cambridge, United States. doi:10.1017/9781009325844.
[4] Abumhadi, N., Todorovska, E., Assenov, B., Tsonev, S., Vulcheva, D., Vulchev, D., Atanasova, L., Savova, S., & Atanassov, A. (2012). Agricultural research in 21st century: Challenges facing the food security under the impacts of climate change. Bulgarian Journal of Agricultural Science, 18(6), 801–818.
[5] Huang, H., Legg, W., & Cattaneo, A. (2010). Climate Change and Agriculture: The Policy Challenge for the 21st Century? EuroChoices, 9(3), 9–15. doi:10.1111/j.1746-692x.2010.00174.x. (In German).
[6] Verma, K. K., Song, X. P., Kumari, A., Jagadesh, M., Singh, S. K., Bhatt, R., Singh, M., Seth, C. S., & Li, Y. R. (2025). Climate change adaptation: Challenges for agricultural sustainability. Plant, Cell & Environment, 48(4), 2522–2533. doi:10.1111/pce.15078.
[7] Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539–42559. doi:10.1007/s11356-022-19718-6.
[8] IPCC. (2022). Climate Change 2022: Mitigation of Climate Change. Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United States. doi:10.1017/9781009157926.
[9] UNECE. (2024). Working Party on Agricultural Quality Standards. United Nations Economic Commission for Europe (UNECE), Geneva, Switzerland. Available online: https://unece.org/sites/default/files/2024-11/Programme_0.pdf (accessed on July 2025).
[10] World Bank. (2024). Climate Smart Agriculture. World Bank, Washington, United States. Available online: https://www.worldbank.org/en/topic/climate-smart-agriculture# (accessed on November 2025).
[11] Kummu, M., Heino, M., Taka, M., Varis, O., & Viviroli, D. (2021). Climate change risks pushing one-third of global food production outside the safe climatic space. One Earth, 4(5), 720–729. doi:10.1016/j.oneear.2021.04.017.
[12] World Bank. (2012). Climate-smart agriculture: a call for action. World Bank, Washington, United States. Available online: https://www.worldbank.org/content/dam/Worldbank/document/CSA_Brochure_web_WB.pdf (accessed on November 2025).
[13] Vishnoi, S., & Goel, R. K. (2024). Climate smart agriculture for sustainable productivity and healthy landscapes. Environmental Science and Policy, 151. doi:10.1016/j.envsci.2023.103600.
[14] Ma, W., & Rahut, D. B. (2024). Climate-smart agriculture: adoption, impacts, and implications for sustainable development. Mitigation and Adaptation Strategies for Global Change, 29(5), 44. doi:10.1007/s11027-024-10139-z.
[15] Partey, S. T., Zougmoré, R. B., Ouédraogo, M., & Campbell, B. M. (2018). Developing climate-smart agriculture to face climate variability in West Africa: Challenges and lessons learnt. Journal of Cleaner Production, 187, 285–295. doi:10.1016/j.jclepro.2018.03.199.
[16] FAO. (2009). Food Security and Agricultural Mitigation in Developing Countries: Options for Capturing Synergies. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. Available online: https://www.fao.org/docrep/012/i1318e/i1318e00.pdf (accessed on November 2025).
[17] FAO. (2010) “Climate-Smart” Agriculture Policies, Practices and Financing for Food Security, Adaptation and Mitigation. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. Available online: https://www.fao.org/4/i1881e/i1881e00.pdf (accessed on November 2025).
[18] Samim, S. A., Deng, X., & Li, Z. (2024). Climate-smart agricultural practices- determinants and impact on crop production. New insights from Afghanistan. Mitigation and Adaptation Strategies for Global Change, 29(8), 91. doi:10.1007/s11027-024-10178-6.
[19] Lee, C. L., Orton, G., & Lu, P. (2024). Global Meta-Analysis of Innovation Attributes Influencing Climate-Smart Agriculture Adoption for Sustainable Development. Climate, 12(11), 192. doi:10.3390/cli12110192.
[20] Zuma-Netshiukhwi, G., Anderson, J. J., Wessels, C. H., & Malatsi, E. (2025). Upscaling the Uptake of Climate-Smart Agriculture in Semi-Arid Areas of South Africa. Atmosphere, 16(6), 729. doi:10.3390/atmos16060729.
[21] Torsu, D. A., Danso-Abbeam, G., Ogundeji, A. A., Owusu-Sekyere, E., & Owusu, V. (2024). Heterogeneous impacts of greenhouse farming technology as climate-smart agriculture on household welfare in Ghana. Journal of Cleaner Production, 434, 139785. doi:10.1016/j.jclepro.2023.139785.
[22] Konfo, T. R. C., Chabi, A. B. P., Amoussouga Gero, A., Lagnika, C., Avlessi, F., Biaou, G., & Sohounhloue, C. K. D. (2024). Recent climate-smart innovations in agrifood to enhance producer incomes through sustainable solutions. Journal of Agriculture and Food Research, 15, 100985. doi:10.1016/j.jafr.2024.100985.
[23] Petros, C., Feyissa, S., Sileshi, M., & Shepande, C. (2025). Factors Influencing Climate-Smart Agriculture Practices Adoption and Crop Productivity among Smallholder Farmers in Nyimba District, Zambia. F1000Research, 13, 815. doi:10.12688/f1000research.144332.3.
[24] Aziz, M. A., Ayob, N. H., Ayob, N. A., Ahmad, Y., & Abdulsomad, K. (2024). Factors Influencing Farmer Adoption of Climate-Smart Agriculture Technologies: Evidence from Malaysia. Human Technology, 20(1), 70-92. doi:10.14254/1795-6889.2024.20-1.4.
[25] Musa, S. F. P. D., & Ariff Lim, S. (2025). Revitalising agriculture through climate change mitigation: a systematic literature review on smart technologies and sustainable practices. International Journal of Climate Change Strategies and Management, 17(1), 481–499. doi:10.1108/IJCCSM-05-2024-0071.
[26] Khasanov, S., Kulmatov, R., Li, F., van Amstel, A., Bartholomeus, H., Aslanov, I., Sultonov, K., Kholov, N., Liu, H., & Chen, G. (2023). Impact assessment of soil salinity on crop production in Uzbekistan and its global significance. Agriculture, Ecosystems and Environment, 342, 108262. doi:10.1016/j.agee.2022.108262.
[27] Abdul Razak, S. F., Yogarayan, S., Sayeed, M. S., & Mohd Derafi, M. I. F. (2024). Agriculture 5.0 and Explainable AI for Smart Agriculture: A Scoping Review. Emerging Science Journal, 8(2), 744–760. doi:10.28991/ESJ-2024-08-02-024.
[28] FAO. (2012). Developing a Climate-Smart Agriculture Strategy at the Country Level: Lessons from Recent Experience. Background Paper for the Second Global Conference on Agriculture, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. Available online: https://www.fao.org/4/ap401e/ap401e.pdf (accessed on November 2025).
[29] Tesfaye, W., Blalock, G., & Tirivayi, N. (2021). Climate-Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways. American Journal of Agricultural Economics, 103(3), 878–899. doi:10.1111/ajae.12161.
[30] Thornton, P. K., Whitbread, A., Baedeker, T., Cairns, J., Claessens, L., Baethgen, W., Bunn, C., Friedmann, M., Giller, K. E., Herrero, M., Howden, M., Kilcline, K., Nangia, V., Ramirez-Villegas, J., Kumar, S., West, P. C., & Keating, B. (2018). A framework for priority-setting in climate smart agriculture research. Agricultural Systems, 167, 161–175. doi:10.1016/j.agsy.2018.09.009.
[31] Saran, A., Singh, S., Gupta, N., Walke, S. C., Rao, R., Simiyu, C., Malhotra, S., Mishra, A., Puskur, R., Masset, E., White, H., & Waddington, H. S. (2024). Interventions promoting resilience through climate smart agricultural practices for women farmers: A systematic review. Campbell Systematic Reviews, 20(3), 1426. doi:10.1002/cl2.1426.
[32] Erick, S. B., Mbwambo, J. S., & Salanga, R. J. (2025). Adoption of climate-smart agricultural practices among smallholder leafy vegetable agripreneurs in semi-arid regions. A bibliometric review. Social Sciences and Humanities Open, 11, 101428. doi:10.1016/j.ssaho.2025.101428.
[33] Kabato, W., Getnet, G. T., Sinore, T., Nemeth, A., & Molnár, Z. (2025). Towards Climate-Smart Agriculture: Strategies for Sustainable Agricultural Production, Food Security, and Greenhouse Gas Reduction. Agronomy, 15(3), 565. doi:10.3390/agronomy15030565.
[34] Zheng, H., Ma, W., & He, Q. (2024). Climate-smart agricultural practices for enhanced farm productivity, income, resilience, and greenhouse gas mitigation: a comprehensive review. Mitigation and Adaptation Strategies for Global Change, 29(4), 28. doi:10.1007/s11027-024-10124-6.
[35] Okolie, C. C., Danso-Abbeam, G., Groupson-Paul, O., & Ogundeji, A. A. (2023). Climate-Smart Agriculture Amidst Climate Change to Enhance Agricultural Production: A Bibliometric Analysis. Land, 12(1), 50. doi:10.3390/land12010050.
[36] Patra, N. K., & Babu, S. C. (2023). Institutional and policy process for climate-smart agriculture: evidence from Nagaland State, India. Journal of Water and Climate Change, 14(1), 1–16. doi:10.2166/wcc.2022.024.
[37] Ritchie, H., Rosado, P., & Roser, M. (2022). Environmental Impacts of Food Production. Our World in Data.org, Geneva, Switzerland. Available online: https://ourworldindata.org/environmental-impacts-of-food (accessed on November 2025).
[38] Food and Agriculture Organization of the United Nations (FAO). (2025). Drones4Rice. Food and Agriculture Organization of the United Nations, Rome, Italy. Available online: https://dvi-ke.fao.org/digital_initiatives_details.php?id=94 (accessed on November 2025).
[39] Brears, R. (2025). Climate Smart Agriculture: Resilient Farming, Precision Technologies, and Sustainable Food Systems. Global Climate Solutions, LinkedIn, Sunnyvale, United States. Available online: https://www.linkedin.com/pulse/climate-smart-agriculture-resilient-farming-precision-brears-xoczf/ (accessed on November 2025).
[40] Tanti, P. C., Jena, P. R., Timilsina, R. R., & Rahut, D. B. (2024). Enhancing crop yields and farm income through climate-smart agricultural practices in Eastern India. Mitigation and Adaptation Strategies for Global Change, 29(5), 35. doi:10.1007/s11027-024-10122-8.
[41] Gemtou, M., Isakhanyan, G., & Fountas, S. (2025). Advancing climate-smart agriculture: Integrating technology, behavioural insights and policy for a sustainable future. Smart Agricultural Technology, 11, 100861. doi:10.1016/j.atech.2025.100861.
[42] Asante, B. O., Ma, W., Prah, S., & Temoso, O. (2024). Farmers’ adoption of multiple climate-smart agricultural technologies in Ghana: determinants and impacts on maize yields and net farm income. Mitigation and Adaptation Strategies for Global Change, 29(2), 16. doi:10.1007/s11027-024-10114-8.
[43] Agyekum, T. P., Antwi-Agyei, P., Dougill, A. J., & Stringer, L. C. (2024). Benefits and barriers to the adoption of climate-smart agriculture practices in West Africa: A systematic review. Climate Resilience and Sustainability, 3(3), 279. doi:10.1002/cli2.79.
[44] Tambol, T., Derbile, E. K., & Soulé, M. (2025). Use of climate smart agriculture technologies in West Africa peri-urban Sahel in Niger. Scientific Reports, 15, 2771. doi:10.1038/s41598-024-82813-w.
[45] Omotoso, A. B., & Omotayo, A. O. (2025). Enhancing dietary diversity and food security through the adoption of climate-smart agricultural practices in Nigeria: a micro level evidence. Environment, Development and Sustainability, 27(7), 17077–17094. doi:10.1007/s10668-024-04681-8.
[46] He, R., Dai, Y., & Sun, G. (2025). How agricultural extension services affect farmers’ adoption of climate-smart technology? Evidence from rural China. Journal of Environmental Planning and Management, 1–31. doi:10.1080/09640568.2025.2488013.
[47] Alemayehu, S., Ayalew, Z., Sileshi, M., & Zeleke, F. (2024). Determinants of the adoption of climate smart agriculture practices by smallholder wheat farmers in northwestern Ethiopia. Heliyon, 10(13), e34233. doi:10.1016/j.heliyon.2024.e34233.
[48] Rogers, E. (2003). Diffusion of Innovations (5th Ed.). Simon and Schuster, New York, United States.
[49] Erekalo, K. T., Pedersen, S. M., Christensen, T., Denver, S., Gemtou, M., Fountas, S., & Isakhanyan, G. (2024). Review on the contribution of farming practices and technologies towards climate-smart agricultural outcomes in a European context. Smart Agricultural Technology, 7, 100413. doi:10.1016/j.atech.2024.100413.
[50] Arshad, M., & Abdulai, A. (2025). The drivers of adoption and impact of climate-smart agricultural practices on livestock farmers’ household welfare in Pakistan. Frontiers in Sustainable Food Systems, 9, 1604899. doi:10.3389/fsufs.2025.1604899.
[51] Mpinda, M. O., Bett, H. K., & Muluvi, A. S. (2025). Determinants of adoption of climate-smart agricultural practices among smallholder maize farmers in North East District, Botswana. Discover Agriculture, 3(1), 114. doi:10.1007/s44279-025-00293-6.
[52] Ferdous, Z., Anwar, M., Zahan, T., Islam, M. A., & Hossain, M. S. (2023) Climate-Smart Agriculture Technologies and Practices in Bangladesh. SAARC Agriculture Centre, Dhaka, Bangladesh.
[53] Egamberdiev, B., Zakirov, B., & Useinov, A. (2025). Fostering Resilience for Food Security in Uzbekistan. ZBW - Leibniz Information Centre for Economics, Kiel, Germany. Available online: https://hdl.handle.net/10419/318075 (accessed on July 2025).
[54] Bilal, M., Mirkasimov, B., Asfaw, E. B., Djanibekov, N., Useinov, A., Rashitova, N., Rajabova, S., & Abduvalieva, N. (2024). Potential of crop diversification to address the hidden costs of major crop value chains in Central Asia. Background paper for The State of Food and Agriculture 2024. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. doi:10.4060/cd2993en.
[55] FAO. (2023). Promotion of Iraq’s agricultural extension system by supporting digital innovation and capacity development in light of the current COVID-19 pandemic. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. Available online: https://www.fao.org/3/cd1224en/cd1224en.pdf (accessed on November 2025).
[56] Karimov, A., Khalikov, B., Isaev, S., Sindarov, O., Khayitov, K., Avliyakulov, M., Isashov, A., Bulanbayeva, P., Djumanazarova, A., Muhammadov, Y., Rajabov, N., Murtazayeva, G., Kurbanov, S., Allanov, K., & Khaitov, B. (2025). Efficiency of drip irrigation in amaranth production using the HYDRUS-1D model. Frontiers in Sustainable Food Systems, 9, 1612679. doi:10.3389/fsufs.2025.1612679.
[57] Gemtou, M., Kakkavou, K., Anastasiou, E., Fountas, S., Pedersen, S. M., Isakhanyan, G., Erekalo, K. T., & Pazos-Vidal, S. (2024). Farmers’ Transition to Climate-Smart Agriculture: A Systematic Review of the Decision-Making Factors Affecting Adoption. Sustainability (Switzerland), 16(7), 2828. doi:10.3390/su16072828.
[58] Khatri-Chhetri, A., Aggarwal, P. K., Joshi, P. K., & Vyas, S. (2017). Farmers’ prioritization of climate-smart agriculture (CSA) technologies. Agricultural Systems, 151, 184–191. doi:10.1016/j.agsy.2016.10.005.
[59] Barua, P., & Mitra, A. (2024). Review on Climate Smart Agriculture Practice: A Global Perspective. Journal of Climate Change, 10(1), 11–20. doi:10.3233/jcc240003.
[60] Ni, L., Akramov, K., & Fan, S. (2024). Land tenure change and agricultural production and productivity in Uzbekistan. New Uzbekistan, 135–163, Routledge, United Kingdom. doi:10.4324/9781003473497-6.
[61] Abdivaitov, K., Strobl, J., & Hennig, S. (2024). Crop Rotation Current Practice and Decision-Making-A Case Study of Kumkurgan District, Uzbekistan. International Journal of Geoinformatics, 20(12), 65–76. doi:10.52939/ijg.v20i12.3777.
[62] Erdogan, C. (2020). Cotton and Products Update. Cotton and Products Annual Report UZ2020-0002. Turkey. USDA Foreign Agricultural Service (FAS), Washington, United States.
[63] World Bank. (2023). Uzbekistan - Policy Perspectives for Irrigation and Drainage Sector Reform. World Bank, Washington, United States. Available online: http://documents.worldbank.org/curated/en/099022824155511451 (accessed on June 2025).
[64] Anghelescu, A.-M., & Onel, I.-D. (2024). The EU’s Green Normative Power in Central Asia. European Union Governance in Central Asia, 91–110, Routledge, United Kingdom. doi:10.4324/9781032670218-8.
[65] Nurbekov, A. (2022). Conservation Agriculture in Uzbekistan – Status and Perspectives. Agro Inform, 2, 27–32. doi:10.24412/2181-2411-2022-2-27-32.
[66] Pretty, J., Benton, T. G., Bharucha, Z. P., Dicks, L. V., Flora, C. B., Godfray, H. C. J., Goulson, D., Hartley, S., Lampkin, N., Morris, C., Pierzynski, G., Prasad, P. V. V., Reganold, J., Rockström, J., Smith, P., Thorne, P., & Wratten, S. (2018). Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, 1, 441–446. doi:10.1038/s41893-018-0114-0.
[67] Ogisi, O. D., & Begho, T. (2023). Adoption of climate-smart agricultural practices in sub-Saharan Africa: A review of the progress, barriers, gender differences and recommendations. Farming System, 1(2), 100019. doi:10.1016/j.farsys.2023.100019.
[68] Makate, C., Makate, M., Mango, N., & Siziba, S. (2019). Increasing resilience of smallholder farmers to climate change through multiple adoption of proven climate-smart agriculture innovations. Lessons from Southern Africa. Journal of Environmental Management, 231, 858–868. doi:10.1016/j.jenvman.2018.10.069.
[69] Kassie, M., Marenya, P., Tessema, Y., Jaleta, M., Zeng, D., Erenstein, O., & Rahut, D. (2018). Measuring Farm and Market Level Economic Impacts of Improved Maize Production Technologies in Ethiopia: Evidence from Panel Data. Journal of Agricultural Economics, 69(1), 76–95. doi:10.1111/1477-9552.12221.
[70] Bolatova, Z., Engindeniz, S. (2020). The Economics of Climate Change in Agriculture: A Review on Kazakhstan and Turkey. Sustainable Food Chains and Ecosystems, 1-15, Springer, Switzerland. doi:10.1007/978-3-030-39609-1_1.
[71] Lou, Y., Feng, L., Xing, W., Hu, N., Noellemeyer, E., Le Cadre, E., Minamikawa, K., Muchaonyerwa, P., AbdelRahman, M. A. E., Machado Pinheiro, É. F., de Vries, W., Liu, J., Chang, S. X., Zhou, J., Sun, Z., Hao, W., & Mei, X. (2024). Climate-smart agriculture: Insights and challenges. Climate Smart Agriculture, 1(1), 100003. doi:10.1016/j.csag.2024.100003.
[72] Ali, T., Rehman, S. U., Ali, S., Mahmood, K., Obregon, S. A., Iglesias, R. C., Khurshaid, T., & Ashraf, I. (2024). Smart agriculture: utilizing machine learning and deep learning for drought stress identification in crops. Scientific Reports, 14, 30062 10 1038 41598–024–74127–8. doi:10.1038/s41598-024-74127-8.
[73] Rosenstock, T., Wilkes, A., Nowak, A., Akamandisa, V. M., Bondo, A., Kimaro, A. A., Lucas, I., Makoko, K., Masikati, P., Malozo, M., Morongwe, S., Ngwira, G., Njoloma, J., Nyoka, I., Pedzisa, T., Shoo, A., Temu, E., & Fay, J. (2018). Measurement, reporting and verification of climate-smart agriculture: Change of perspective, change of possibilities? CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Wageningen, Netherlands.
[74] Quarshie, P. T., Abdulai, S., & Fraser, E. D. G. (2023). (Re)assessing Climate-Smart Agriculture practices for sustainable food systems outcomes in sub-Saharan Africa: The case of Bono East Region, Ghana. Geography and Sustainability, 4(2), 112–126. doi:10.1016/j.geosus.2023.02.002.
[75] Billah, M. M., Rahman, M. M., Mahimairaja, S., Lal, A., Srinivasulu, A., & Naidu, R. (2025). Constraints and prospects of adoption of climate smart agriculture interventions: Implication for farm sustainability. Climate Smart Agriculture, 2(3), 100066. doi:10.1016/j.csag.2025.100066.
[76] Villalba, R., Joshi, G., Daum, T., & Venus, T. E. (2024). Financing Climate-Smart Agriculture: a case study from the Indo-Gangetic Plains. Mitigation and Adaptation Strategies for Global Change, 29, 33. doi:10.1007/s11027-024-10127-3.
[77] Falchetta, G., Semeria, F., Tuninetti, M., Giordano, V., Pachauri, S., & Byers, E. (2023). Solar irrigation in sub-Saharan Africa: economic feasibility and development potential. Environmental Research Letters, 18(9), 94044. doi:10.1088/1748-9326/acefe5.
[78] World Bank. (2024). Uzbekistan – General Water Security Assessment (English). Report 191771. World Bank Group, Washington, United States. Available online: http://documents.worldbank.org/curated/en/099062424121035288 (accessed on November 2025).
[79] Zorya, S. (2020). Recent Agricultural Growth in Uzbekistan: Assessment and Forecast (English). World Bank, Washington, United States. Available online: http://documents.worldbank.org/curated/en/515031601287108231 (accessed on November 2025).
[80] Ministry of Ecology, Environmental Protection and Climate Change of Uzbekistan (2023). National state of the environment report: Uzbekistan. International Institute for Sustainable Development, Geneva, Switzerland.
[81] World Bank. (2025). Uzbekistan – National Irrigation and Energy Efficiency Improvement Project as First Phase of the Water Efficiency and Conservation Multi-Phase Programmatic Approach (English). World Bank, Washington, United States. Available online: http://documents.worldbank.org/curated/en/099042825213520583 (accessed on November 2025).
[82] Wichelns, D., Anarbekov, O., Jumaboev, K., & Manthrithilake, H. (2010). Irrigation pricing alternatives for water user associations in Central Asia. IWMI Conference Proceedings, 211317, International Water Management Institute. doi:10.22004/ag.econ.211317.
[83] Du, Y., Liu, X., Zhang, L., & Zhou, W. (2023). Drip irrigation in agricultural saline-alkali land controls soil salinity and improves crop yield: Evidence from a global meta-analysis. Science of the Total Environment, 880, 163226. doi:10.1016/j.scitotenv.2023.163226.
[84] Sitokonstantinou, V., Porras, E. D. S., Bautista, J. C., Piles, M., Athanasiadis, I., Kerner, H., ... & Camps-Valls, G. (2024). Causal machine learning for sustainable agroecosystems. arXiv Preprint, arXiv:2408.13155. doi:10.48550/arXiv.2408.13155.
[85] Republic of Uzbekistan. (2019). Presidential Decree UP-5853 of October 23, 2019 On the approval of Development of Agriculture in the Republic of Uzbekistan for 2020–2030. Available online: https://lex.uz/en/docs/6971398?ONDATE=24.10.2019 (accessed on November 2025).
[86] World Bank. (2025). Project Appraisal Document on a Proposed Credit in the Amount of US$200 Million to the Republic of Uzbekistan for a National Irrigation and Energy Efficiency Improvement Project (P504600). Report No: PADHI00554, World Bank, Washington DC, United States.
[87] Hayward, D. (2021). Uzbekistan - Context and land governance. Land Portal Foundation, Amersfoort, Netherlands. Available online: https://landportal.org/book/narratives/2021/uzbekistan (accessed on November 2025).
[88] Kapoor, S., & Pal, B. D. (2024). Impact of adoption of climate smart agriculture practices on farmer’s income in semi-arid regions of Karnataka. Agricultural Systems, 221, 104135. doi:10.1016/j.agsy.2024.104135.
[89] FAO. (2024). Smart Farming for the Future Generation. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. Available online: https://openknowledge.fao.org/items/7e4fa8d0-a963-4828-a947-ec80d55b2367 (accessed on July 2025).
[90] FAO. (2025). Successful Completion of the “Smart Farming for the Future Generation” Project: Final National Workshop. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. Available online: https://www.fao.org/countryprofiles/news-archive/detail-news/en/c/1742451 (accessed on November 2025).
[91] FAO. (2024). Digital Villages Initiative in Europe and Central Asia. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. Available online: https://www.fao.org/digital-villages-initiative/europe/fergana-villages/digital-villages-in-uzbekistan/ (accessed on November 2025).
[92] UNDP Uzbekistan. (2022). Climate Change Risks in Fergana Valley [Completed]. UNDP Uzbekistan, Tashkent, Uzbekistan. Available online: https://www.undp.org/uzbekistan/projects/completed-climate-change-risks-fergana-valley (accessed on July 2025).
[93] IIWMI. (2015). Managing irrigation-drainage systems to sustainably enhance productivity in Fergana Valley, Central Asia. International Water Management Institute (IIWMI), Colombo, Sri Lanka. Available online: https://archive.iwmi.org/wle/project/managing-irrigation-drainage-systems-sustainably-enhance-productivity-fergana-valley-central/index.html (accessed on November 2025).
[94] World Bank. (2024). Restructuring paper on a proposed project restructuring of Ferghana Valley Water Resources Management – Phase II. World Bank, Washington, United States. Available online: https://documents1.worldbank.org/curated/en/099082624024531448/pdf/P1496101ba419f0e119e931a0c4d1768072.pdf (accessed on November 2025).
[95] Berhanu, A. A., Ayele, Z. B., & Dagnew, D. C. (2024). Impact of climate-smart agricultural practices on smallholder farmers’ resilience in Ethiopia. Journal of Agriculture and Food Research, 16, 101147. doi:10.1016/j.jafr.2024.101147.
[96] Ishtiaque, A., Krupnik, T. J., Krishna, V., Uddin, M. N., Aryal, J. P., Srivastava, A. K., Kumar, S., Shahzad, M. F., Bhatt, R., Gardezi, M., Bahinipati, C. S., Nazu, S. B., Ghimire, R., Anik, A. R., Sapkota, T. B., Ghosh, M., Subedi, R., Sardar, A., Uddin, K. M. Z., Khatri-Chhetri, A., Rahman, Md. S., Balwinder-Singh, & Jain, M. (2024). Overcoming barriers to climate-smart agriculture in South Asia. Nature Climate Change, 14(2), 111–113. doi:10.1038/s41558-023-01905-z.
[97] Pedersen, S. M., Erekalo, K. T., Christensen, T., Denver, S., Gemtou, M., Fountas, S., Isakhanyan, G., Rosemarin, A., Ekane, N., Puggaard, L. L., Nertinger, M., Brinks, H., Puško, D., & Adrián, J. B. (2024). Drivers and barriers to climate-smart agricultural practices and technologies adoption: Insights from stakeholders of five European food supply chains. Smart Agricultural Technology, 8, 100478. doi:10.1016/j.atech.2024.100478.
[98] Vinokurov, E., Ahunbaev, A., Chuyev, S., & Adakhayev, A. (2023). Efficient Irrigation and Water Conservation in Central Asia. Reports and Working Papers 23/4, Eurasian Development Bank, Almaty, Kazakhstan.
[99] Kannazarova, Z., Ryssalieva, L., Khamidov, S., Khamraev, K., Jaliliova, G., & Najodov, B. (2024). Management Practices for Improving Soilhealth in the Aral Sea Basin: A Case Study from Karakalpakstan. Sustainable Agriculture, 22(2), 5-8.
[100] Hermans, F., Djumanazarova, A., & Akramkhanov, A., (2023). Complete scaling readiness study of land-assisted laser levelling in Uzbekistan. International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon.
[101] Vitón, R.; Garzaron, L.; Menza, G.; Zaccari, C.; & Dolinga, M. (2025). The state of the agri-, food-, and climate-tech innovation ecosystem in Uzbekistan. CGIAR Accelerate for Impact Platform and Valoral Advisors, Rome, Italy.
[102] Khaitov, B., Karimov, A., Khaitbaeva, J., Sindarov, O., Karimov, A., & Li, Y. (2022). Perspectives of Licorice Production in Harsh Environments of the Aral Sea Regions. International Journal of Environmental Research and Public Health, 19(18), 11770. doi:10.3390/ijerph191811770.
[103] Ualiyeva, R. M., Kukusheva, A. N., Insebayeva, M. K., Akhmetov, K. K., Zhangazin, S. B., & Krykbayeva, M. S. (2022). Agrotechnological methods of plant feeders applying for spring wheat agrocenoses – North-Eastern Kazakhstan varieties. Journal of Water and Land Development, 55(X–XII), 28–40. doi:10.24425/jwld.2022.142301.
[104] Ewulo, T. A., Akinseye, F. M., Teme, N., Agele, S. O., Yessoufou, N., & Kumar, S. (2025). Factors driving Climate-Smart Agriculture adoption: a study of smallholder farmers in Koumpentum, Senegal. Frontiers in Agronomy, 7, 1552720. doi:10.3389/fagro.2025.1552720.
[105] Finizola e Silva, M., Van Schoubroeck, S., Cools, J., & Van Passel, S. (2024). A systematic review identifying the drivers and barriers to the adoption of climate-smart agriculture by smallholder farmers in Africa. Frontiers in Environmental Economics, 3, 1356335. doi:10.3389/frevc.2024.1356335.
[106] Teklu, A., Simane, B., & Bezabih, M. (2023). Multiple adoption of climate-smart agriculture innovation for agricultural sustainability: Empirical evidence from the Upper Blue Nile Highlands of Ethiopia. Climate Risk Management, 39, 100477. doi:10.1016/j.crm.2023.100477.
[107] Zeleke, G., Teshome, M., & Ayele, L. (2024). Determinants of Smallholder Farmers’ Decisions to Use Multiple Climate-Smart Agricultural Technologies in North Wello Zone, Northern Ethiopia. Sustainability, 16(11), 4560. doi:10.3390/su16114560.
[108] Geda, M. B., Haji, J., Jemal, K., & Zeleke, F. (2024). Determinants of adoption of climate smart agricultural technologies in wheat production in Arsi Zone, Oromia Region of Ethiopia. Discover Food, 4, 8. doi:10.1007/s44187-024-00077-9.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.




















