Performance Evaluation of Inclined-Step and Wall Roughness on Battery Thermal Management System
Downloads
In this study, the effects of inclined steps and wall roughness on the step-like plenum of the Z-type battery thermal management system (BTMS) are examined, extending the literature on its design. Due to the performance of the design in achieving a reduction in maximum temperature (Tmax), additional modifications are required to provide more insight into further enhancing the thermal performance and overcoming the design’s drawback, such as higher pressure drop (ΔP). The performance of the system was evaluated in terms of the and maximum temperature difference (ΔTmax) of batteries in the systems and ΔP across the system. The temperature values were selected after comparing the maximum temperatures recorded on each battery. Investigations were carried out using a Computational Fluid Dynamics (CFD) method, which was validated by comparing with experimental data from the literature. Findings revealed that the step designs with inclined angles of 5°, 45° and 85° reduced the Tmax by 3.18 K, 3.9 K, and 4.34 K, respectively, when compared to the Z-type design. However, the Z-type design has the lowest ΔP value (16.50 Pa), while the original step-like design system produced the highest value (20.96 Pa). When considering the roughness, by increasing the roughness height from 5 μm to 10 μm, an increase in Tmax was observed, while wall roughness generally decreases the ΔP. From 0 to 10 μm, Tmax increased by 0.03 K (0.01%) and ΔP increased by 0.07 Pa (0.29 %), indicating negligible effects. The study, therefore, concludes that adequate selection of step design with different angles, air inlet velocity, temperature, and wall roughness will be highly beneficial for designing cost-effective and efficient BTMSs.
Downloads
[1] Babu Sanker, S., & Baby, R. (2022). Phase change material based thermal management of lithium-ion batteries: A review on thermal performance of various thermal conductivity enhancers. Journal of Energy Storage, 50, 104606. doi:10.1016/j.est.2022.104606.
[2] Yang, Y., Okonkwo, E. G., Huang, G., Xu, S., Sun, W., & He, Y. (2021). On the sustainability of lithium-ion battery industry – A review and perspective. Energy Storage Materials, 36, 186–212. doi:10.1016/j.ensm.2020.12.019.
[3] Saw, L. H., Ye, Y., Tay, A. A. O., Chong, W. T., Kuan, S. H., & Yew, M. C. (2016). Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling. Applied Energy, 177, 783–792. doi:10.1016/j.apenergy.2016.05.122.
[4] Dan, D., Yao, C., Zhang, Y., Zhang, H., Zeng, Z., & Xu, X. (2019). Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model. Applied Thermal Engineering, 162, 114183. doi:10.1016/j.applthermaleng.2019.114183.
[5] Zhong, G., Zhang, G., Yang, X., Li, X., Wang, Z., Yang, C., Yang, C., & Gao, G. (2017). Researches of composite phase change material cooling/resistance wire preheating coupling system of a designed 18650-type battery module. Applied Thermal Engineering, 127, 176–183. doi:10.1016/j.applthermaleng.2017.08.022.
[6] Akinlabi, A. A. H., & Solyali, D. (2020). Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review. Renewable and Sustainable Energy Reviews, 125, 109815. doi:10.1016/j.rser.2020.109815.
[7] Behi, H., Karimi, D., Behi, M., Ghanbarpour, M., Jaguemont, J., Sokkeh, M. A., Gandoman, F. H., Berecibar, M., & Van Mierlo, J. (2020). A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Applied Thermal Engineering, 174, 115280. doi:10.1016/j.applthermaleng.2020.115280.
[8] Zhang, F., Lin, A., Wang, P., & Liu, P. (2021). Optimization design of a parallel air-cooled battery thermal management system with spoilers. Applied Thermal Engineering, 182, 116062. doi:10.1016/j.applthermaleng.2020.116062.
[9] Wang, M., Teng, S., Xi, H., & Li, Y. (2021). Cooling performance optimization of air-cooled battery thermal management system. Applied Thermal Engineering, 195, 117242. doi:10.1016/j.applthermaleng.2021.117242.
[10] Alzwayi, A., & Paul, M. C. (2024). Heat transfer enhancement of a lithium-ion battery cell using vertical and spiral cooling fins. Thermal Science and Engineering Progress, 47, 102304. doi:10.1016/j.tsep.2023.102304.
[11] Liang, J., Gan, Y., & Li, Y. (2018). Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures. Energy Conversion and Management, 155, 1–9. doi:10.1016/j.enconman.2017.10.063.
[12] Liang, Z., Wang, R., Malt, A. H., Souri, M., Esfahani, M. N., & Jabbari, M. (2021). Systematic evaluation of a flat-heat-pipe-based thermal management: Cell-to-cell variations and battery ageing. Applied Thermal Engineering, 192(5), 116934. doi:10.1016/j.applthermaleng.2021.116934.
[13] Panchal, S., Khasow, R., Dincer, I., Agelin-Chaab, M., Fraser, R., & Fowler, M. (2017). Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery. Applied Thermal Engineering, 122, 80–90. doi:10.1016/j.applthermaleng.2017.05.010.
[14] Rao, Z., Qian, Z., Kuang, Y., & Li, Y. (2017). Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface. Applied Thermal Engineering, 123, 1514–1522. doi:10.1016/j.applthermaleng.2017.06.059.
[15] Fathabadi, H. (2014). High thermal performance lithium-ion battery pack including hybrid active-passive thermal management system for using in hybrid/electric vehicles. Energy, 70, 529–538. doi:10.1016/j.energy.2014.04.046.
[16] Rao, Z., Wang, Q., & Huang, C. (2016). Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system. Applied Energy, 164, 659–669. doi:10.1016/j.apenergy.2015.12.021.
[17] Samimi, F., Babapoor, A., Azizi, M., & Karimi, G. (2016). Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers. Energy, 96, 355–371. doi:10.1016/j.energy.2015.12.064.
[18] Qin, P., Liao, M., Mei, W., Sun, J., & Wang, Q. (2021). The experimental and numerical investigation on a hybrid battery thermal management system based on forced-air convection and internal finned structure. Applied Thermal Engineering, 195, 117212. doi:10.1016/j.applthermaleng.2021.117212.
[19] Sharma, D. K., Agarwal, P., & Prabhakar, A. (2023). Effect of fin design and continuous cycling on thermal performance of PCM-HP hybrid BTMS for high ambient temperature applications. Journal of Energy Storage, 74(Part B), 109360. doi:10.1016/j.est.2023.109360.
[20] Mashayekhi, M., Houshfar, E., & Ashjaee, M. (2020). Development of hybrid cooling method with PCM and Al2O3 nanofluid in aluminium minichannels using heat source model of Li-ion batteries. Applied Thermal Engineering, 178, 115543. doi:10.1016/j.applthermaleng.2020.115543.
[21] Xie, N., Zhang, Y., Liu, X., Luo, R., Liu, Y., & Ma, C. (2023). Thermal performance and structural optimization of a hybrid thermal management system based on MHPA/PCM/liquid cooling for lithium-ion battery. Applied Thermal Engineering, 235, 121341. doi:10.1016/j.applthermaleng.2023.121341.
[22] Chen, K., Wang, S., Song, M., & Chen, L. (2017). Configuration optimization of battery pack in parallel air-cooled battery thermal management system using an optimization strategy. Applied Thermal Engineering, 123, 177–186. doi:10.1016/j.applthermaleng.2017.05.060.
[23] Chen, K., Wu, W., Yuan, F., Chen, L., & Wang, S. (2019). Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern. Energy, 167, 781–790. doi:10.1016/j.energy.2018.11.011.
[24] Chen, K., Song, M., Wei, W., & Wang, S. (2019). Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement. International Journal of Heat and Mass Transfer, 132, 309–321. doi:10.1016/j.ijheatmasstransfer.2018.12.024.
[25] Chen, K., Chen, Y., Li, Z., Yuan, F., & Wang, S. (2018). Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system. International Journal of Heat and Mass Transfer, 127, 393–401. doi:10.1016/j.ijheatmasstransfer.2018.06.131.
[26] Jiaqiang, E., Yue, M., Chen, J., Zhu, H., Deng, Y., Zhu, Y., Zhang, F., Wen, M., Zhang, B., & Kang, S. (2018). Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle. Applied Thermal Engineering, 144, 231–241. doi:10.1016/j.applthermaleng.2018.08.064.
[27] Wang, N., Li, C., Li, W., Huang, M., & Qi, D. (2021). Effect analysis on performance enhancement of a novel air cooling battery thermal management system with spoilers. Applied Thermal Engineering, 192, 116932. doi:10.1016/j.applthermaleng.2021.116932.
[28] Oyewola, O. M., Ismail, O. S., & Awonusi, A. A. (2022). Examination of Channel Angles Influence on the Cooling Performance of Air-cooled Thermal Management System of Li-Ion Battery. International Review of Mechanical Engineering, 16(4), 172–179. doi:10.15866/ireme.v16i4.22239.
[29] Sun, H., & Dixon, R. (2014). Development of cooling strategy for an air cooled lithium-ion battery pack. Journal of Power Sources, 272, 404–414. doi:10.1016/j.jpowsour.2014.08.107.
[30] Chen, J., Zhao, X., Wang, B., Zhang, C., & Xuan, D. (2021). Multiobjective optimization of air-cooled battery thermal management system based on heat dissipation model. Ionics, 27(3), 1307–1322. doi:10.1007/s11581-020-03853-6.
[31] Chen, K., Hou, J., Wu, X., Chen, Y., Song, M., & Wang, S. (2021). Design of flow pattern in air-cooled battery thermal management system. International Journal of Energy Research, 45(6), 9541–9554. doi:10.1002/er.6480.
[32] Chen, K., Song, M., Wei, W., & Wang, S. (2018). Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement. Energy, 145, 603–613. doi:10.1016/j.energy.2017.12.110.
[33] Oyewola, O. M., Awonusi, A. A., & Ismail, O. S. (2023). Design optimization of Air-Cooled Li-ion battery thermal management system with Step-like divergence plenum for electric vehicles. Alexandria Engineering Journal, 71, 631–644. doi:10.1016/j.aej.2023.03.089.
[34] Chen, K., Wang, S., Song, M., & Chen, L. (2017). Structure optimization of parallel air-cooled battery thermal management system. International Journal of Heat and Mass Transfer, 111, 943–952. doi:10.1016/j.ijheatmasstransfer.2017.04.026.
[35] Yu, K., Yang, X., Cheng, Y., & Li, C. (2014). Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack. Journal of Power Sources, 270, 193–200. doi:10.1016/j.jpowsour.2014.07.086.
[36] Wang, M., Hung, T. C., & Xi, H. (2021). Numerical study on performance enhancement of the air-cooled battery thermal management system by adding parallel plates. Energies, 14(11), 3096. doi:10.3390/en14113096.
[37] Oyewola, O. M., & Idowu, E. T. (2024). Effects of step-like plenum, flow pattern and inlet flow regime on thermal management system. Applied Thermal Engineering, 243, 122637. doi:10.1016/j.applthermaleng.2024.122637.
[38] Li, N., Liu, X., Yu, B., Li, L., Xu, J., & Tan, Q. (2021). Study on the environmental adaptability of lithium-ion battery powered UAV under extreme temperature conditions. Energy, 219, 119481. doi:10.1016/j.energy.2020.119481.
[39] Wei, W., Luo, Z., Qiao, S., Zhai, J., & Lei, Z. (2024). Analysis and design of module-level liquid cooling system for rectangular Li-ion batteries. International Journal of Heat and Mass Transfer, 225, 125435. doi:10.1016/j.ijheatmasstransfer.2024.125435.
[40] Verma, S. P., & Saraswati, S. (2024). Comprehensive thermal performance analysis of an air-cooled staggered configured Li-ion battery pack- A numerical and experimental approach. Journal of Energy Storage, 89. doi:10.1016/j.est.2024.111792.
[41] Tran, M. K., Panchal, S., Chauhan, V., Brahmbhatt, N., Mevawalla, A., Fraser, R., & Fowler, M. (2022). Python-based scikit-learn machine learning models for thermal and electrical performance prediction of high-capacity lithium-ion battery. International Journal of Energy Research, 46(2), 786–794. doi:10.1002/er.7202.
[42] Billert, A. M., Erschen, S., Frey, M., & Gauterin, F. (2022). Predictive battery thermal management using quantile convolutional neural networks. Transportation Engineering, 10, 100150. doi:10.1016/j.treng.2022.100150.
[43] Najafi Khaboshan, H., Jaliliantabar, F., Abdullah, A. A., Panchal, S., & Azarinia, A. (2024). Parametric investigation of battery thermal management system with phase change material, metal foam, and fins; utilizing CFD and ANN models. Applied Thermal Engineering, 247(15), 123080. doi:10.1016/j.applthermaleng.2024.123080.
[44] Oyewola, O. M., & Idowu, E. T. (2024). Wave and straight plenum effects on thermal management system performance. International Journal of Thermofluids, 22, 100678. doi:10.1016/j.ijft.2024.100678.
[45] Zare, P., Perera, N., Lahr, J., & Hasan, R. (2024). A novel thermal management system for cylindrical lithium-ion batteries using internal-external fin-enhanced phase change material. Applied Thermal Engineering, 238, 121985. doi:10.1016/j.applthermaleng.2023.121985.
[46] Wu, C., Qiu, C., Yuan, X., Yuan, N., Zhang, B., Li, Y., Qin, L., & Shi, H. (2024). Numerical study and optimization of battery thermal management systems (BTMS) Based on Fin-Phase change material (PCM) in variable gravity environments. Applied Thermal Engineering, 244, 122777. doi:10.1016/j.applthermaleng.2024.122777.
[47] Suo, Y., Tang, C., Jia, Q., & Zhao, W. (2024). Influence of PCM configuration and optimization of PCM proportion on the thermal management of a prismatic battery with a combined PCM and air-cooling structure. Journal of Energy Storage, 80, 110340. doi:10.1016/j.est.2023.110340.
[48] Bernagozzi, M., Georgoulas, A., Miché, N., & Marengo, M. (2024). Experimental analysis of the influence of ambient temperature for a Loop Heat Pipe based Battery Thermal Management System. Experimental and Computational Multiphase Flow, 6(3), 242–252. doi:10.1007/s42757-023-0185-5.
[49] Wu, C., Ni, J., Shi, X., & Huang, R. (2024). A new design of cooling plate for liquid-cooled battery thermal management system with variable heat transfer path. Applied Thermal Engineering, 239, 122107. doi:10.1016/j.applthermaleng.2023.122107.
[50] Wu, C., Yuan, X., Kong, B., Zou, Y., & Shi, H. (2024). Innovative liquid cooling channel enhanced battery thermal management (BTM) structure based on stepwise optimization method. Journal of Energy Storage, 81, 110485. doi:10.1016/j.est.2024.110485.
[51] Dilbaz, F., Selimefendigil, F., & Öztop, H. F. (2024). Comparisons of different cooling systems for thermal management of lithium-ion battery packs: Phase change material, nano-enhanced channel cooling and hybrid method. Journal of Energy Storage, 90, 111865. doi:10.1016/j.est.2024.111865.
[52] Lu, D., Cui, N., Zhou, J., & Li, C. (2024). Hybrid cooling system with phase change material and liquid microchannels to prevent thermal runaway propagation within lithium-ion battery packs. Applied Thermal Engineering, 247, 123118. doi:10.1016/j.applthermaleng.2024.123118.
[53] Rahjoo, M., Rojas, E., Goracci, G., & Dolado, J. S. (2024). Exploring the role of surface roughness in concrete-based thermal energy storage systems: A computational study. Journal of Energy Storage, 88, 111515. doi:10.1016/j.est.2024.111515.
[54] Cebeci, T. (2004). Conservation Equations for Compressible Turbulent Flows. Analysis of Turbulent Flows, 31–48. doi:10.1016/b978-008044350-8/50002-6.
[55] Kadivar, M., Tormey, D., & McGranaghan, G. (2021). A review on turbulent flow over rough surfaces: Fundamentals and theories. International Journal of Thermofluids, 10, 100077. doi:10.1016/j.ijft.2021.100077.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















