IoT-Driven Emotional Data Analytics for Medical Applications: Insights and Innovations
Downloads
This study introduces the Internet of Things-based Emotional State Detection Model (IoT-ESDM), a comprehensive and intelligent emotional computing framework aimed at detecting and managing anxiety-related behavior in healthcare environments. The model leverages a multi-modal approach that combines facial expression analysis, physiological signal monitoring, and AI-driven classification to accurately identify emotional states in real time. Core components of the system include fuzzy color filtering, histogram analysis, and virtual face modeling, which work together to extract relevant emotional features from input data. These features are then analyzed to provide adaptive, personalized feedback to patients or caregivers, enhancing emotional well-being support. Experimental results demonstrate the superior performance of IoT-ESDM over existing emotion detection systems. The model achieved a feedback ratio of 97.54%, accessibility ratio of 95.3%, detection accuracy of 92.7%, and a classification accuracy of 98.13%. Additionally, it showed a quality assurance rate of 94.13%, contributed to a 29.1% reduction in anxiety levels, and yielded a health outcome ratio of 94.5%. These metrics validate the system's effectiveness in clinical and real-world applications. The success of IoT-ESDM highlights its potential as a powerful tool for emotion-aware AI interventions, paving the way for future advancements in mental health monitoring and personalized healthcare solutions.
Downloads
[1] Gao, J., Wang, H., & Shen, H. (2020). Machine Learning Based Workload Prediction in Cloud Computing. Proceedings - International Conference on Computer Communications and Networks, ICCCN, 2020-August, 1–9. doi:10.1109/ICCCN49398.2020.9209730.
[2] Baskar, S., Mohamed Shakeel, P., Kumar, R., Burhanuddin, M. A., & Sampath, R. (2020). A dynamic and interoperable communication framework for controlling the operations of wearable sensors in smart healthcare applications. Computer Communications, 149, 17–26. doi:10.1016/j.comcom.2019.10.004.
[3] Pham, D. V., Nguyen, G. L., Nguyen, T. N., Pham, C. V., & Nguyen, A. V. (2020). Multi-topic misinformation blocking with budget constraint on online social networks. IEEE Access, 8, 78879–78889. doi:10.1109/ACCESS.2020.2989140.
[4] Gheisari, M., Najafabadi, H. E., Alzubi, J. A., Gao, J., Wang, G., Abbasi, A. A., & Castiglione, A. (2021). OBPP: An ontology-based framework for privacy-preserving in IoT-based smart city. Future Generation Computer Systems, 123, 1-13. doi:10.1016/j.future.2021.01.028
[5] Vu, D. L., Nguyen, T. K., Nguyen, T. V., Nguyen, T. N., Massacci, F., & Phung, P. H. (2020). HIT4Mal: Hybrid image transformation for malware classification. Transactions on Emerging Telecommunications Technologies, 31(11), 1 3789. doi:10.1002/ett.3789.
[6] Billah, M. F. R. M., Saoda, N., Gao, J., & Campbell, B. (2021). BLE can see: a reinforcement learning approach for RF-based indoor occupancy detection. Proceedings of the 20th international conference on information processing in sensor networks (co-located with CPS-IoT week 2021), 132-147. doi:10.1145/3412382.3458262
[7] Rinesh, S., Arun, M., Kumar, S. N., Prajitha, C., & Kumar, A. P. S. (2025). Evaluating the type 2 fuzzy logic controller with multilayer perceptrons for optimal tracking of solar photovoltaic systems. International Journal of Low-Carbon Technologies, 20, 394–403. doi:10.1093/ijlct/ctaf016.
[8] Varatharajan, R., Manogaran, G., Priyan, M. K., & Sundarasekar, R. (2018). Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Cluster Computing, 21(1), 681–690. doi:10.1007/s10586-017-0977-2.
[9] Abou-Nassar, E. M., Iliyasu, A. M., El-Kafrawy, P. M., Song, O. Y., Bashir, A. K., & Abd El-Latif, A. A. (2020). DITrust chain: towards blockchain-based trust models for sustainable healthcare IoT systems. IEEE access, 8, 111223-111238. doi:10.1109/ACCESS.2020.2999468.
[10] Kurdi, H., Alsalamah, S., Alatawi, A., Alfaraj, S., Altoaimy, L., & Ahmed, S. H. (2019). Healthybroker: A trustworthy blockchain-based multi-cloud broker for patient-centered eHealth services. Electronics (Switzerland), 8(6), 6. doi:10.3390/electronics8060602.
[11] Darwish, A., Hassanien, A. E., Elhoseny, M., Sangaiah, A. K., & Muhammad, K. (2019). The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: opportunities, challenges, and open problems. Journal of Ambient Intelligence and Humanized Computing, 10(10), 4151-4166. doi:10.1007/s12652-017-0659-1.
[12] Amudha, G. T., Jayasri, K., Saipriya, A., Shivani, & Praneetha, C. H. (2019). Behavioural Based Online Comment Spammers in Social Media. International Journal of Innovative Technology and Exploring Engineering, 9(1S), 175–179. doi:10.35940/ijitee.a1037.1191s19.
[13] Manogaran, G., Varatharajan, R., & Priyan, M. K. (2018). Hybrid Recommendation System for Heart Disease Diagnosis based on Multiple Kernel Learning with Adaptive Neuro-Fuzzy Inference System. Multimedia Tools and Applications, 77(4), 4379–4399. doi:10.1007/s11042-017-5515-y.
[14] Sternly, K., Anbananthen, K. S. M., & Lee, S. (2013). A Ubiquitous Personal Health Record (uPHR) Framework. Proceedings of the 2013 International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013, 423-427. doi:10.2991/icacsei.2013.105.
[15] Ashraf, R., Zafar, B., Jabbar, S., Ahmad, M., & Ahmed, S. H. (2019). Modeling and simulation of resource-constrained vaccination strategies and epidemic outbreaks. In EAI/Springer Innovations in Communication and Computing (pp. 131–141). Springer. doi:10.1007/978-3-319-96139-2_13.
[16] Wu, J. M. T., Srivastava, G., Jolfaei, A., Fournier-Viger, P., & Lin, J. C. W. (2021). Hiding sensitive information in eHealth datasets. Future Generation Computer Systems, 117, 169-180. doi:10.1016/j.future.2020.11.026.
[17] Fang, L., Yin, C., Zhu, J., Ge, C., Tanveer, M., Jolfaei, A., & Cao, Z. (2021). Privacy Protection for Medical Data Sharing in Smart Healthcare. ACM Transactions on Multimedia Computing, Communications and Applications, 16(3s), 1–18. doi:10.1145/3408322.
[18] Huifeng, W., Kadry, S. N., & Raj, E. D. (2020). Continuous health monitoring of sportsperson using IoT devices based wearable technology. Computer Communications, 160, 588–595. doi:10.1016/j.comcom.2020.04.025.
[19] Kumari, A., Tanwar, S., Tyagi, S., & Kumar, N. (2018). Fog computing for Healthcare 4.0 environment: Opportunities and challenges. Computers and Electrical Engineering, 72, 1–13. doi:10.1016/j.compeleceng.2018.08.015.
[20] Baskar, S., Dhulipala, V. R. S., Shakeel, P. M., Sridhar, K. P., & Kumar, R. (2020). Hybrid fuzzy based spearman rank correlation for cranial nerve palsy detection in MIoT environment. Health and Technology, 10(1), 259-270. doi:10.1007/s12553-019-00294-8.
[21] Muthu, B. A., Sivaparthipan, C. B., Manogaran, G., Sundarasekar, R., Kadry, S., Shanthini, A., & Dasel, A. (2020). IOT based wearable sensor for diseases prediction and symptom analysis in healthcare sector. Peer-to-Peer Networking and Applications, 13(6), 2123–2134. doi:10.1007/s12083-019-00823-2.
[22] Elhoseny, M., Ramírez-González, G., Abu-Elnasr, O. M., Shawkat, S. A., Arunkumar, N., & Farouk, A. (2018). Secure Medical Data Transmission Model for IoT-Based Healthcare Systems. IEEE Access, 6, 20596–20608. doi:10.1109/ACCESS.2018.2817615.
[23] Kumar, M. G. S., Dhulipala, V. R. S., & Baskar, S. (2021). Fuzzy unordered rule induction algorithm based classification for reliable communication using wearable computing devices in healthcare. Journal of Ambient Intelligence and Humanized Computing, 12(3), 3515–3526. doi:10.1007/s12652-020-02219-0.
[24] Gunasekaran, A., & Narayanasamy, P. (2018). Analyzing the network performance of various replica detection algorithms in wireless sensor network. Journal of Computational and Theoretical Nanoscience, 15(3), 989–994. doi:10.1166/jctn.2018.7188.
[25] Elyasir, A. M. H., & Anbananthen, K. S. M. (2012). Focused web crawler. In Proceedings of International Conference on Information and Knowledge Management, IPCSIT, 45, 149–153.
[26] Alam, F., Yifei, L., Raza, M., & Khan, K. (2020). The impact of leader’s emotional intelligence on employee organizational behavior: Mediating role of employee motivation. European Academic Research, 7(10), 5127–5154.
[27] Anbananthen, K. S. M., & Elyasir, A. M. H. (2013). Evolution of opinion mining. Australian Journal of Basic and Applied Sciences, 7(6), 359-370.
[28] Sultana, M., Al-Jefri, M., & Lee, J. (2020). Using machine learning and smartphone and smartwatch data to detect emotional states and transitions: Exploratory study. JMIR MHealth and UHealth, 8(9), 17818. doi:10.2196/17818.
[29] Hamsa, S., Shahin, I., Iraqi, Y., & Werghi, N. (2020). Emotion Recognition from Speech Using Wavelet Packet Transform Cochlear Filter Bank and Random Forest Classifier. IEEE Access, 8, 96994–97006. doi:10.1109/ACCESS.2020.2991811.
[30] Barreiro, C. A., & Treglown, L. (2020). What makes an engaged employee? A facet-level approach to trait emotional intelligence as a predictor of employee engagement. Personality and Individual Differences, 159, 109892. doi:10.1016/j.paid.2020.109892.
[31] Sharmila, P., Anbananthen, K. S. M., Chelliah, D., Parthasarathy, S., & Kannan, S. (2022). PDHS: Pattern-Based Deep Hate Speech Detection with Improved Tweet Representation. IEEE Access, 10, 105366–105376. doi:10.1109/ACCESS.2022.3210177.
[32] Chowdary, M. K., Nguyen, T. N., & Hemanth, D. J. (2023). Deep learning-based facial emotion recognition for human–computer interaction applications. Neural Computing and Applications, 35(32), 23311–23328. doi:10.1007/s00521-021-06012-8.
[33] Trigueros, R., Navarro, N., Cangas, A. J., Mercader, I., Aguilar-Parra, J. M., González-Santos, J., González-Bernal, J. J., & Soto-Cámara, R. (2020). The protective role of emotional intelligence in self-stigma and emotional exhaustion of family members of people with mental disorders. Sustainability (Switzerland), 12(12), 4862. doi:10.3390/SU12124862.
[34] Zhang, Y., Sheng, M., Zhou, R., Wang, Y., Han, G., Zhang, H., Xing, C., & Dong, J. (2020). HKGB: An Inclusive, Extensible, Intelligent, Semi-auto-constructed Knowledge Graph Framework for Healthcare with Clinicians’ Expertise Incorporated. Information Processing and Management, 57(6), 102324. doi:10.1016/j.ipm.2020.102324.
[35] Navarro-Mateu, D., Alonso-Larza, L., Gómez-Domínguez, M. T., Prado-Gascó, V., & Valero-Moreno, S. (2020). I’m Not Good for anything and that’s Why I’m Stressed: Analysis of the Effect of Self-Efficacy and Emotional Intelligence on Student Stress Using SEM and QCA. Frontiers in Psychology, 11, 295. doi:10.3389/fpsyg.2020.00295.
[36] Shi, M., & Du, T. (2020). Associations of emotional intelligence and gratitude with empathy in medical students. BMC Medical Education, 20(1), 1–8. doi:10.1186/s12909-020-02041-4.
[37] Doss, S., Paranthaman, J., Gopalakrishnan, S., Duraisamy, A., Pal, S., Duraisamy, B., Van, C. Le, & Le, D. N. (2021). Memetic optimization with cryptographic encryption for secure medical data transmission in IoT-based distributed systems. Computers, Materials and Continua, 66(2), 1577–1594. doi:10.32604/cmc.2020.012379.
[38] GitHub (2025). HealthKnowledgeGraph. GitHub, Inc. Available online: https://github.com/clinicalml/HealthKnowledgeGraph (accessed on December 2025).
[39] Ali, S., Sajjad, M., Lee, I. H., Cheikh, F. A., Ribigan, A. C., Pedullà, L., Papagiannakis, N., Hijji, M., & Muhammad, K. (2025). IoT-Driven Facial Expression Recognition for Personalized Healthcare in Industry 5.0. IEEE Internet of Things Journal, 12(22), 45995–46002. doi:10.1109/JIOT.2025.3553413.
[40] Lu, J., Zheng, Y., Chu, C., Zeng, T., Zhao, Y., & Li, T. (2025). Towards Emotion-Aware Healthcare: A Comprehensive Review of Multimodal Emotion Recognition Technologies in Medical Practice. Digest of Technical Papers - SID International Symposium, 56(S1), 914–919. doi:10.1002/sdtp.18963.
[41] Zamani, S., Sinha, R., Nguyen, M., & Madanian, S. (2025). Enhancing Emotional Well-Being with IoT Data Solutions for Depression: A Systematic Review. IEEE Journal of Biomedical and Health Informatics, 29(3), 1919–1930. doi:10.1109/JBHI.2024.3501254.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















