Combining a Moving Average with a Triple EWMA Chart to Improve Detection Performance
Downloads
This article aims to introduce the novel mixed triple exponentially weighted moving average-moving average (MTEM) chart to accurately detect position changes for both symmetric and non-symmetric distributions. The MTEM chart constructs a moving average (MA) structure to filter out fluctuations in the raw data and then applies triple exponential weighting to improve the ability to identify minor shifts. The average run length (ARL) and median run length (MRL), which are run length profiles derived from the Monte Carlo simulation (MC) strategy, were used to compare the performance of the suggested chart with that of MA, EWMA, TEWMA, and mixed moving average-triple exponentially weighted moving average (MMTE) charts. In addition, the expected average run length (EARL) and expected median run length (EMRL) were also used to rate the overall results. Results of the study indicate that the MTEM chart surpasses competitor charts in detecting minor to moderate changes. The MMTE chart responds slightly slower than the proposed chart. Due to its smoothed and re-averaged structure, it may lose significant information. The MA chart worked better for greater shifts. Furthermore, the MTEM chart competency was applied to two real-world datasets, confirming its practicality.
Downloads
[1] Montgomery, D. C. (2020). Introduction to statistical quality control. John Wiley & Sons, Hoboken, United States.
[2] Shewhart, W. A. (2022). Economic control of quality of manufactured product. Barakaldo Books, New York, United States.
[3] Page, E. S. (1961). Cumulative Sum Charts. Technometrics, 3(1), 1. doi:10.2307/1266472.
[4] Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics, 1(3), 239. doi:10.2307/1266443.
[5] Lucas, J. M., & Saccucci, M. S. (1990). Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements: Response. Technometrics, 32(1), 27. doi:10.2307/1269841.
[6] Shamma, S. E., & Shamma, A. K. (1992). Development and Evaluation of Control Charts Using Double Exponentially Weighted Moving Averages. International Journal of Quality & Reliability Management, 9(6), 18–25. doi:10.1108/02656719210018570.
[7] Sheu, S. H., & Lin, T. C. (2003). The Generally Weighted Moving Average Control Chart for Detecting Small Shifts in the Process Mean. Quality Engineering, 16(2), 209–231. doi:10.1081/QEN-120024009.
[8] Alemi, F. (2004). Tukeyʼs Control Chart. Quality Management in Health Care, 13(4), 216–221. doi:10.1097/00019514-200410000-00004.
[9] Khoo, M. B. C. (2004). A moving average control chart for monitoring the fraction non-conforming. Quality and Reliability Engineering International, 20(6), 617–635. doi:10.1002/qre.576.
[10] Alkahtani, S. S. (2013). Robustness of DEWMA versus EWMA Control Charts to Non-Normal Processes. Journal of Modern Applied Statistical Methods, 12(1), 148–163. doi:10.22237/jmasm/1367381820.
[11] Khan, N., Aslam, M., & Jun, C. H. (2017). Design of a Control Chart Using a Modified EWMA Statistic. Quality and Reliability Engineering International, 33(5), 1095–1104. doi:10.1002/qre.2102.
[12] Alevizakos, V., Chatterjee, K., & Koukouvinos, C. (2021). The triple exponentially weighted moving average control chart. Quality Technology and Quantitative Management, 18(3), 326–354. doi:10.1080/16843703.2020.1809063.
[13] Alevizakos, V., Chatterjee, K., & Koukouvinos, C. (2022). Modified EWMA and DEWMA control charts for process monitoring. Communications in Statistics - Theory and Methods, 51(21), 7390–7412. doi:10.1080/03610926.2021.1872642.
[14] Zaman, B., Riaz, M., Abbas, N., & Does, R. J. M. M. (2015). Mixed Cumulative Sum-Exponentially Weighted Moving Average Control Charts: An Efficient Way of Monitoring Process Location. Quality and Reliability Engineering International, 31(8), 1407–1421. doi:10.1002/qre.1678.
[15] Khan, N., Aslam, M., & Jun, C. H. (2016). A EWMA Control Chart for Exponential Distributed Quality Based on Moving Average Statistics. Quality and Reliability Engineering International, 32(3), 1179–1190. doi:10.1002/qre.1825.
[16] Taboran, R., Sukparungsee, S., & Areepong, Y. (2021). Design of a New Tukey MA-DEWMA Control Chart to Monitor Process and its Applications. IEEE Access, 9, 102746–102757. doi:10.1109/ACCESS.2021.3098172.
[17] Mahmood, Y., Khoo, M. B. C., Teh, S. Y., & Saha, S. (2022). On designing TEWMA-Tukey control charts for normal and non-normal processes using single and repetitive sampling schemes. Computers and Industrial Engineering, 170, 108343. doi:10.1016/j.cie.2022.108343.
[18] Talordphop, K., Sukparungsee, S., & Areepong, Y. (2022). New modified exponentially weighted moving average-moving average control chart for process monitoring. Connection Science, 34(1), 1981–1998. doi:10.1080/09540091.2022.2090513.
[19] Talordphop, K., Sukparungsee, S., & Areepong, Y. (2023). Mixed Tukey Exponentially Weighted Moving Average-Modified Exponentially Weighted Moving Average Control Chart for Process Monitoring. Emerging Science Journal, 7(3), 854–866. doi:10.28991/ESJ-2023-07-03-014.
[20] Sukparungsee, S., & Phantu, S. (2024). Explicit Formulas of Moving Average Control Chart for Zero Modified Geometric Integer Valued Autoregressive Process. Applied Science and Engineering Progress, 17(1), 6921. doi:10.14416/j.asep.2023.09.004.
[21] Tyagi, D., & Yadav, V. (2024). Combined Quality Control Scheme for Monitoring Autocorrelated Process. Thailand Statistician, 22(4), 986–1005.
[22] Raza, M. A., Amin, A., Aslam, M., Nawaz, T., Irfan, M., & Tariq, F. (2024). Nonparametric mixed exponentially weighted moving average-moving average control chart. Scientific Reports, 14(1), 6759. doi:10.1038/s41598-024-57407-1.
[23] Raza, M. A., Tariq, F., Zaagan, A. A., Engmann, G. M., Mahnashi, A. M., & Meetei, M. Z. (2024). A nonparametric mixed exponentially weighted moving average-moving average control chart with an application to gas turbines. PLOS ONE, 19(8), e0307559. doi:10.1371/journal.pone.0307559.
[24] Phantu, S., Areepong, Y., & Sukparungsee, S. (2025). On Designing of Modified Exponentially Weighted Moving Average Control Chart based on Sign Rank for Zero-Inflated Data. Science and Technology Asia, 30(1), 158–176. doi:10.14456/scitechasia.2025.10.
[25] You, H. W., Chong, M. K. B., Lin, C. Z., & Lin, T. W. (2020). The Expected Average Run Length of the EWMA Median Chart with Estimated Process Parameters. Austrian Journal of Statistics, 49(3), 19–24. doi:10.17713/ajs.v49i3.1020.
[26] You, H. W., Khoo, M. B. C., Castagliola, P., & Qu, L. (2016). Optimal exponentially weighted moving average charts with estimated parameters based on median run length and expected median run length. International Journal of Production Research, 54(17), 5073–5094. doi:10.1080/00207543.2016.1145820.
[27] EPPO. (2024). CO2 emission by energy type and sector. Ministry of Energy, Bangkok, Thailand. Available online: https://www.eppo.go.th/index.php/th/energy-information/static-energy/static-co2 (accessed on September 2025). (In Thai).
[28] Shanker, R., Fesshaye, H., & Selvaraj, S. (2015). On Modeling of Lifetimes Data Using Exponential and Lindley Distributions. Biometrics & Biostatistics International Journal, 2(5), 140–147. doi:10.15406/bbij.2015.02.00042.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















