Probability Density Function Adjustment for Estimating Quantile Regression Coefficients
Downloads
This study aims to improve the estimation of quantile regression coefficients by adjusting probability density functions using a selected τ-function that exhibits symmetric properties. The research focuses on five quantile levels Q(20)th, Q(25)th, Q(50)th, Q(75)th, and Q(80)th and compares the proposed method with conventional multiple regression through simulation experiments under varying sample sizes and distributional conditions. Performance is evaluated using the mean absolute error (MAE) as the primary metric. The findings indicate that for small sample sizes (n=8, n=15), both multiple and quantile regression methods perform well, especially at lower quantiles (Q(20)th to Q(50)th). However, as sample sizes increase (n=50, n=100), quantile regression at higher quantiles (Q(50)th, Q(75)th, Q(80)th) demonstrates superior estimation accuracy. In relation to kurtosis and skewness, the Q(50)th and Q(80)th quantiles are sensitive to distributional changes, effectively capturing transitions from high to normal kurtosis and central shifts in skewed distributions. The novelty of this research lies in the integration of the τ-function into the quantile regression framework, enhancing robustness and accuracy in coefficient estimation under non-normal conditions. This approach contributes to methodological advancements in regression analysis, particularly in applications involving non-standard data distributions.
Downloads
[1] Draper, N. R., & Smith, H. (1998). Applied Regression Analysis. John Wiley & Sons, New Jersey, United States.
[2] Lee, J., & Kim, D. Robust quantile regression under heavy-tailed distributions with kernel-based density estimation. Statistics and Its Interface, 17(2), 210–225.
[3] Koenker, R., & Bassett, G. (1978). Regression Quantiles. Econometrica, 46(1), 33. doi:10.2307/1913643.
[4] Khaothong, K. (2019). Analysis of failing load and optimization of hot air welding parameters on PVC-acrylic coated polyester fabric by Taguchi and ANOVA technique. Engineering Journal, 23(6), 331–344. doi:10.4186/ej.2019.23.6.331.
[5] Bhattacharyya, H. T., Kleinbaum, D. G., & Kupper, L. L. (1979). Applied Regression Analysis and Other Multivariable Methods. Journal of the American Statistical Association, 74(367), 732. doi:10.2307/2287012.
[6] Robinson, A., Cook, R. D., & Weisberg, S. (1984). Residuals and Influence in Regression. Journal of the Royal Statistical Society. Series A (General), Chapman and Hall, Florid, United States. doi:10.2307/2981746.
[7] Lu, H., Dong, C., & Zhou, J. (2021). A Sequential Shrinkage Estimating Method for Tobit Regression Model. Open Journal of Modelling and Simulation, 09(03), 275–280. doi:10.4236/ojmsi.2021.93018.
[8] Moujahid, A., & Vadillo, F. (2021). A Comparison of Deterministic and Stochastic Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Recovered (SIR) Models. Open Journal of Modelling and Simulation, 09(03), 246–258. doi:10.4236/ojmsi.2021.93016.
[9] Yu, K., & Moyeed, R. A. (2001). Bayesian quantile regression. Statistics & Probability Letters, 54(4), 437-447. doi:10.1016/S0167-7152(01)00124-9.
[10] Zhang, X., Wang, D., Lian, H., & Li, G. (2023). Nonparametric quantile regression for homogeneity pursuit in panel data models. Journal of Business & Economic Statistics, 41(4), 1238-1250. doi:10.1080/07350015.2022.2118125.
[11] He, X., Ng, P., & Portnoy, S. (1998). Bivariate quantile smoothing splines. Journal of the Royal Statistical Society Series B: Statistical Methodology, 60(3), 537-550. doi:10.1111/1467-9868.00138.
[12] Zhou, X. H., Lin, H., & Johnson, E. (2008). Non-parametric heteroscedastic transformation regression models for skewed data with an application to health care costs. Journal of the Royal Statistical Society Series B: Statistical Methodology, 70(5), 1029-1047. doi:10.1111/j.1467-9868.2008.00669.x.
[13] Koenker, R., & Xiao, Z. (2006). Quantile autoregression. Journal of the American Statistical Association, 101(475), 980–990. doi:10.1198/016214506000000672.
[14] Furno, M. (2014). Predictions in Quantile Regressions. Open Journal of Statistics, 4(7), 504–517. doi:10.4236/ojs.2014.47048.
[15] Boz, Ç. (2013). Estimating the New Keynesian Phillips Curve by Quantile Regression Method for Turkey. Modern Economy, 04(09), 627–632. doi:10.4236/me.2013.49067.
[16] Horowitz, J. L., & Lee, S. (2005). Nonparametric estimation of an additive quantile regression model. Journal of the American Statistical Association, 100(472), 1238–1249. doi:10.1198/016214505000000583.
[17] Hardle, W., Hall, P., & Ichimura, H. (2007). Optimal Smoothing in Single-Index Models. The Annals of Statistics, 21(1), 157–178. doi:10.1214/aos/1176349020.
[18] Hao, L., & Naiman, D. Q. (2007). Quantile Regression. Sage Publication, New Jersey, United States.
[19] Cui, W., & Wei, M. (2013). Strong Consistency of Kernel Regression Estimate. Open Journal of Statistics, 3(3), 179–182. doi:10.4236/ojs.2013.33020.
[20] Khalifa, E. H., Ramadan, D. A., & El-Desouky, B. S. (2021). Statistical Inference of Truncated Weibull-Rayleigh Distribution: Its Properties and Applications. Open Journal of Modelling and Simulation, 9(3), 281–298. doi:10.4236/ojmsi.2021.93019.
[21] Devroye, L., & Györfi, L. (1985). Density Estimation: The L1 View. John Wiley & Sons, New Jersey, United States.
[22] Efimov, V. (2023). Quantile loss & quantile regression. Towards Data Science, San Francisco, United States. Available online: https://towardsdatascience.com/quantile-loss-and-quantile-regression-b0689c13f54d/ (accessed on December 2025).
[23] Koenker, R., & d’Orey, V. (1987). Computing Regression Quantiles. Applied Statistics, 36, 383–393.
[24] Nilbai, T. (2020). Quantile regression. Economics, Ramkhamhaeng University, Bangkok, Thailand. Available online: http://www.eco.ru.ac.th/images/gallery/km/KMecon.pdf (accessed on December 2025).
[25] Fox, J. (2008). Applied Regression Analysis and Generalized Linear Models: Bootstraping Regression Model. Sage Publications, New Jersey, United States.
[26] Rosenblatt, M. (1956). Remarks on Some Nonparametric Estimates of a Density Function. The Annals of Mathematical Statistics, 27(3), 832–837. doi:10.1214/aoms/1177728190.
[27] Parzen, E. (1962). On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics, 33(3), 1065–1076. doi:10.1214/aoms/1177704472.
[28] Kanagarathinam, K., Ponkumar, G., & Sendil Kumar, S. (2024). Performance Analysis of Autoregressive Integrated Moving Average (ARIMA) and ‘earlyR’ Statistical Models for Predicting Epidemic Outbreaks: A Case Study on COVID-19 Data in India. Trends in Sciences, 21(1), 72–46. doi:10.48048/tis.2024.7246.
[29] Huang, M. L., & Nguyen, C. (2018). A nonparametric approach for quantile regression. Journal of Statistical Distributions and Applications, 5(1), 3. doi:10.1186/s40488-018-0084-9.
[30] Bühlmann, P. (2020). Rejoinder: Invariance, Causality and Robustness. Statistical Science, 35(3), 434–436. doi:10.1214/20-STS797.
[31] Chen, J., Wang, T., & Li, Z. Robust quantile regression for high-dimensional data. Statistica Sinica, 31(3), 1459–1482. doi:10.5705/ss.202019.0325.
[32] Santos, R., Pereira, J., & Oliveira, L. Skewed distributions and quantile regression: A simulation study. Statistics & Probability Letters, 179, 109348. doi:10.1016/j.spl.2021.109348.
[33] Tang, Y., Zhu, S., Luo, Y., & Duan, W. (2022). Input servitization, global value chain, and carbon mitigation: An input-output perspective of global manufacturing industry. Economic Modelling, 117, 106069. doi:10.1016/j.econmod.2022.106069.
[34] Lee, Y., & Park, C. Mean regression vs quantile regression: A comparative study. Computational Statistics, 35(4), 1671–1688. doi:10.1007/s00180-020-00967-2.
[35] Khaothong, K., Priyadumkol, J., Chaiworapuek, W., & Kaisinburasak, T. (2022). Optimization of High Frequency Welding Parameters of PVC Coating on Polyester Fabric. Trends in Sciences, 19(8), 34–63. doi:10.48048/tis.2022.3463.
[36] Koenker, R. (2017). Quantile regression. Annual Review of Economics, 9, 155-176.
[37] Wang, S., Li, F., & Chen, X. Model selection and variable screening for quantile regression in big data. Journal of Big Data, 11(1), 24. doi:10.1186/s40537-024-00512-y.
[38] Silverman, B. W. (2018). Density estimation: For statistics and data analysis. Density Estimation: For Statistics and Data Analysis. Chapman and Hall, Florid, United States. doi:10.1201/9781315140919.
[39] Nikitina, L., Paidi, R., & Furuoka, F. (2019). Using bootstrapped quantile regression analysis for small sample research in applied linguistics: Some methodological considerations. PloS one, 14(1), e0210668. doi:10.1371/journal.pone.0210668.
[40] Ferrari, D., & Paterlini, S. (2009). The Maximum L q-Likelihood Method: An Application to Extreme Quantile Estimation in Finance. Methodology and Computing in Applied Probability, 11(1), 3-19. doi:10.1007/s11009-007-9063-1.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















