Study on Preparation of Nano Humic Acid and Adsorption Effect of Heavy Metals in Soil
Downloads
Nano humic acid (NHA) offers a promising strategy for remediating agricultural soils contaminated by livestock and poultry manure. This study investigates the adsorption behavior of NHA for heavy metals (Cu, Zn, As, Mg) and nitrogenous compounds (nitrate and ammonium nitrogen) in real-world polluted soil collected from a poultry farm in Changzhou, China. NHA was synthesized via high-shear, acid-precipitation, and surfactant-assisted methods, and its structure was characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and particle size analysis. FTIR revealed the emergence of new functional groups (e.g., amino, ester, sulfonic), enhancing the active sites available for pollutant binding. At 30 days, NHA treatments achieved substantial reductions in Cu (76.1%), Zn (57.5%), and As (12.9%), with NANO3 and NANO4 showing the highest adsorption capacity. At 90 days, Cu and Mg continued to exhibit strong dose-responsive removal (up to 49.9% and 26.8%, respectively), while Zn and As showed nonlinear responses, likely due to saturation effects. NHA also outperformed traditional humic acid in nitrate and ammonium nitrogen adsorption, with the 25 g/kg application (NANO2) achieving up to 55% nitrate and 20% ammonium reduction. Correlation analysis confirmed that material type, rather than dosage alone, was the dominant factor influencing pollutant immobilization. These findings demonstrate that NHA is an effective, dual-function soil amendment capable of long-term remediation of both heavy metal and nitrogen pollution, offering a cost-effective and scalable solution for improving soil quality in degraded agricultural regions such as the Yellow River basin.
Downloads
[1] Tang, L. (2016). Effects of composting conditions on carbon losses and humus formation during the composting process. Master Thesis, Hangzhou Normal University, Hangzhou, China.
[2] Xu, W. P., Chen, T. B., Liu, J. L., & He, Y. Q. (2004). Environmental pollution, comprehensive prevention and control tactics of the scale and intensify poultry farming. Environmental Science, 25(S1), 105-108.
[3] Su, Y. (2006). Research of countermeasures on waste treating of intensive livestock and poultry farms in China. Chinese Journal of Eco-Agriculture, 14(2), 15-18.
[4] Liao, Q., Wei, G., Jiang, Z., Xing, Y., Huang, D., & Li, Y. (2014). Research progress on resource utilization of livestock and poultry manure. Agricultural Science & Technology, 15(1), 105.
[5] Zhou, Y., Li, S., Yang, F., Guan, Q., & Zhang, N. (2025). Distribution and risk assessment of heavy metals in the upper, middle, and lower reaches of the Yellow River wetlands. Limnology, 26(2), 349-363. doi:10.1007/s10201-025-00780-1.
[6] Cai, T., You, L., Yang, X., Hao, S., Shao, Q., Wang, H., ... & Chen, Y. (2023). Fertilization of peach for yield and quality, and optimization of nitrogen application rates in China: A meta-analysis. Scientia Horticulturae, 313, 111917. doi:10.1016/j.scienta.2023.111917.
[7] Liu, Q., Hu, J., Gong, S., Luo, F., & Yang, G. (2024). Enrichment characteristics and ecological risk assessment of heavy metal Cd in soil and sediment along the Yangtze River in Nanjing, Jiangsu Province. Geological Bulletin of China, 43(5), 756–765. doi:10.12097/gbc.2022.12.008.
[8] He, Z. (2020). Sustainable development of livestock and poultry scale-breeding based on integration control of resource losses and external environmental costs. Environmental Progress & Sustainable Energy, 39(6), e13528. doi:10.1002/ep.13528.
[9] Awual, M. R., Hasan, M. M., Asiri, A. M., & Rahman, M. M. (2019). Cleaning the arsenic (V) contaminated water for safe-guarding the public health using novel composite material. Composites Part B: Engineering, 171, 294-301. doi:10.1016/j.compositesb.2019.05.078.
[10] Wang, K. R. (1997). China’s farmland cadmium pollution situation and governance utilization. Journal of Agro-Environmental Science, 16(6), 274-278..
[11] Ding-qing, Y. A. N. G., & Shao-qing, F. U. (2000). Effect of application of pig dung with high Zn on soil contamination. Sichuan Environment, 2, 30-34.
[12] Ding, G. A. O., Tong-bin, C. H. E. N., Bin, L. I. U., Yuan-ming, Z. H. E. N. G., Guodi, Z. H. E. N. G., & Yan-Xia, L. I. (2006). Releases of pollutants from poultry manure in China and recommended strategies for the pollution prevention. Geographical Research, 25(2), 311-319.
[13] Kulikowska, D., Gusiatin, Z. M., Bułkowska, K., & Klik, B. (2015). Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for different periods of time. Journal of Hazardous Materials, 300, 882–891. doi:10.1016/j.jhazmat.2015.08.022.
[14] Çavusoglu, M. N., Türkoğlu, N., & Özdemir, F. A. (2017). The effects of phosphorus and humic acid on some soil properties flowers quality of Gladiolus. Progress in Nutrition, 19, 150–155. doi:10.23751/pn.v19i1-S.5822.
[15] Martyniuk, H., & Wiȩckowska, J. (2003). Adsorption of metal ions on humic acids extracted from brown coals. Fuel Processing Technology, 84(1–3), 23–36. doi:10.1016/S0378-3820(02)00246-1.
[16] Cheng, L., Xu, L., Liu, W., Zhang, B. L., & Liu, G. J. (2014). Efficient removal of phenol wastewater using nanoscale humic acid adsorbent in ultrasound aided. Huaxue Gongcheng/Chemical Engineering (China), 42(9), 6–11. doi:10.3969/j.issn.1005-9954.2014.09.002.
[17] Cheng, L., Zhang, B., Hou, C., Chen, K., Wang, J., & Shi, Y. (2012). Preparation and characterization of nanoscale humic acid under high shearing condition. Huagong Xuebao/CIESC Journal, 63(8), 2648–2654. doi:10.3969/j.issn.0438-1157.2012.08.044.
[18] Cheng, L., Hou, C., Xu, L., Luo, T., Zhang, B., & Liu, G. (2016). Dynamic adsorption and de-sorption characteristics of wastewater containing cadmium ion on nanoscale humic acid. Huagong Xuebao/CIESC Journal, 67(4), 1348–1356. doi:10.11949/j.issn.0438-1157.20151099.
[19] Erhayem, M., & Sohn, M. (2014). Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles. Science of the Total Environment, 470–471, 92–98. doi:10.1016/j.scitotenv.2013.09.063.
[20] Liang C., (2012). Study on preparation of nanoscale humic acid by alkali-solution and acid-isolation, Master Thesis, Zhengzhou University, Zhengzhou, China.
[21] Yuan, Y., Fang, M., Liu, Y., Zhang, B., Chen, T., Jin, J., Zhuang, L., Yang, T., & Zhang, J. (2025). Enhanced soil remediation with iron-synthetic humic-like acid composites: a trade-off between metal immobilization efficacy and micro-ecological health. Journal of Environmental Management, 389, 126045. doi:10.1016/j.jenvman.2025.126045.
[22] Liu, Y., Zhou, D., Huang, P., Yang, C., Zhang, J., Wang, H., Cheng, Q., Liu, Y., Gao, C., Ma, J., Lin, H., & Ma, J. (2025). Humic acid-supported nanoscale zero-valent iron for sustainable cadmium remediation and crop safety in farmland soil. Journal of Hazardous Materials, 492, 138109. doi:10.1016/j.jhazmat.2025.138109.
[23] Xue, S., Hu, Y., Wan, K., & Miao, Z. (2024). Exploring Humic Acid as an Efficient and Selective Adsorbent for Lead Removal in Multi-Metal Coexistence Systems: A Review. Separations, 11(3), 80. doi:10.3390/separations11030080.
[24] Wang, M., Song, G., Zheng, Z., Song, Z., Mi, X., Hua, J., & Wang, Z. (2024). Effect of humic substances on the fraction of heavy metal and microbial response. Scientific Reports, 14(1), 11206. doi:10.1038/s41598-024-61575-5.
[25] Masmoudi, S., Abid, W., Medhioub, K., & Ammar, E. (2024). Compost derived from olive mill cake: Effects on isohumic soil quality based on humic acids characterization. Heliyon, 10(16). doi:10.1016/j.heliyon.2024.e36456.
[26] Samani, M., Ahlawat, Y. K., Golchin, A., Alikhani, H. A., Fathi-Gerdelidani, A., Ahlawat, U., Malik, A., Panwar, R., Maan, D. S., Ahmed, M., Thakur, P., & Mishra, S. (2024). Nano silica-mediated stabilization of heavy metals in contaminated soils. Scientific Reports, 14(1), 20496. doi:10.1038/s41598-024-69182-0.
[27] Anitha, N., Sheeba, S., Prabhaharan, J., Vallal Kannan, S., Amutha, R., & Sivasankari, B. (2025). Humic Acid: A Natural Enhancer of Soil Quality and Crop Productivity. Communications in Soil Science and Plant Analysis, 56(19), 2831–2843. doi:10.1080/00103624.2025.2527384.
[28] Zhang, Z., Chen, Q., Xu, K., Zhang, K., Zhang, M., Qi, Y., Zhang, W., Liu, Y., Wei, Z., & Liu, Z. (2024). Selective Modifier-Assisted Humic Acid Extraction: Implications for Soil Quality Enhancement. Environmental Science and Technology, 58(22), 9896–9907. doi:10.1021/acs.est.3c10713.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















