Extending C-TAM-TPB: Dual-level Moderation of Perceived Web Security and Age in Digital Banking
Downloads
This study examines the intention to adopt digital banking in Saudi Arabia by integrating the Technology Acceptance Model (TAM) and the Theory of Planned Behavior (TPB). It includes Perceived Web Security (PWS) and Age as moderators, addressing trust and security perceptions across user segments in emerging markets. Data were collected from 353 digital banking users in Saudi Arabia using a cross-sectional quantitative design. The model was tested via Partial Least Squares Structural Equation Modeling (PLS-SEM), assessing measurement validity, path significance, moderation, and mediation effects. Predictive accuracy was evaluated with in-sample (R²) and out-of-sample (Q², PLS-Predict) indicators. The results confirmed the significance of core TAM variables—Perceived Ease of Use (PEU), Perceived Usefulness (PU), and Attitude Toward Use (ATU)—on Behavioral Intention (BI). Attitude was a strong predictor of BI, but Subjective Norms (SN) and Perceived Behavioral Control (PBC) were not significant. PWS moderated the ATU–BI relationship, enhancing intention under high security perception, but Age's dual-moderation effect was unsupported. Sequential mediation analysis validated that PEU and PU influence BI indirectly via ATU. This study enhances digital adoption research through a validated dual-level moderation model combining security perception and age. It refines TAM-TPB integration and offers practical insights for creating secure, user-centered digital banking systems tailored to specific cultures.
Downloads
[1] Mhlanga, D. (2023). Block chain technology for digital financial inclusion in the industry 4.0, towards sustainable development? Frontiers in Blockchain, 6. doi:10.3389/fbloc.2023.1035405.
[2] Pamarthi, K. (2024). Analysis on Opportunities and Challenges of AI in the Banking Industry. International Journal of Artificial Intelligence and Data Science (IJADS), 1(2), 10-23. doi:10.5281/zenodo.13777282.
[3] Chawla, U., Mohnot, R., Singh, H. V., & Banerjee, A. (2023). The Mediating Effect of Perceived Trust in the Adoption of Cutting-Edge Financial Technology among Digital Natives in the Post-COVID-19 Era. Economies, 11(12), 286. doi:10.3390/economies11120286.
[4] Bozkurt, A., Xiao, J., Farrow, R., Bai, J. Y. H., Nerantzi, C., Moore, S., Dron, J., Stracke, C. M., Singh, L., Crompton, H., Koutropoulos, A., Terentev, E., Pazurek, A., Nichols, M., Sidorkin, A. M., Costello, E., Watson, S., Mulligan, D., Honeychurch, S., … Asino, T. I. (2024). The Manifesto for Teaching and Learning in a Time of Generative AI: A Critical Collective Stance to Better Navigate the Future. Open Praxis, 16(4), 487–513. doi:10.55982/openpraxis.16.4.777.
[5] Chen, Z. (2025). Beyond boundaries: exploring the Metaverse in tourism. International Journal of Contemporary Hospitality Management, 37(4), 1257–1275. doi:10.1108/IJCHM-06-2023-0900.
[6] Nel, J., & Boshoff, C. (2023). Unraveling the link between status quo satisfaction and the rejection of digital-only banks. Journal of Financial Services Marketing, 28(1), 189–207. doi:10.1057/s41264-022-00146-z.
[7] Kaur, S. J., Ali, L., Hassan, M. K., & Al-Emran, M. (2021). Adoption of digital banking channels in an emerging economy: exploring the role of in-branch efforts. Journal of Financial Services Marketing, 26(2), 107–121. doi:10.1057/s41264-020-00082-w.
[8] Choudhury, R. R., Ferrer, M. A., & Roy, P. (2025). Evolution of fintech and implications for traditional banking and finance sector. Shaping Cutting-Edge Technologies and Applications for Digital Banking and Financial Services, 147–180. doi:10.4324/9781003501947-10.
[9] Murinde, V., Rizopoulos, E., & Zachariadis, M. (2022). The impact of the FinTech revolution on the future of banking: Opportunities and risks. International Review of Financial Analysis, 81, 102103. doi:10.1016/j.irfa.2022.102103.
[10] Gerea, C., & Herskovic, V. (2022). Transitioning from Multichannel to Omnichannel Customer Experience in Service-Based Companies: Challenges and Coping Strategies. Journal of Theoretical and Applied Electronic Commerce Research, 17(2), 394–413. doi:10.3390/jtaer17020021.
[11] Alshammari, S. H., & Babu, E. (2025). The mediating role of satisfaction in the relationship between perceived usefulness, perceived ease of use and students’ behavioural intention to use ChatGPT. Scientific Reports, 15(1), 7169. doi:10.1038/s41598-025-91634-4.
[12] Tavanti, M., & Sfeir-Younis, A. (2025). Sustainability Beyond 2030: Trajectories and Priorities for Our Sustainable Future. Routledge, London, United Kingdom. doi:10.4324/9781003494676.
[13] Abedalrhman, K., & Alzaydi, A. (2024). Saudi Arabia’s Strategic Leap towards a Diversified Economy and Technological Innovation. SSRN Electronic Journal. doi:10.2139/ssrn.5048258.
[14] Kaddour, A., Alsayed, H. I., & Altrasi, M. (2025). Navigating Fintech Growth in the Asian Market. The Palgrave Handbook of fintech in Africa and Middle East. Reference Works in Business and Management, Palgrave Macmillan, Singapore. doi:10.1007/978-981-96-6143-5_11.
[15] Mohamed, A. K. A. (2023). The Sandbox in Saudi Arabia: A Regulatory Approach and Applications. Green Finance Instruments, FinTech, and Investment Strategies, Sustainable Finance, Springer, Cham, Switzerland. doi:10.1007/978-3-031-29031-2_8.
[16] Sulaiman, S. N. B. M., & Muneeza, A. (2024). Challenges in establishing digital Islamic banks in Malaysia. Islamic Finance in Eurasia, 264–285, Edward Elgar Publishing, Northampton, United States. doi:10.4337/9781035308705.00023.
[17] Jarraya, B., & Alresheedi, A. (2025). Bank Challenges Facing the Emergence of FinTech. FinTech and Robotics Advancements for Green Finance and Investment, 173–206, IGI Global Scientific Publishing, Hershey, United States. doi:10.4018/979-8-3373-0355-0.ch006.
[18] Sayari, S. (2024). Driving Digital Transformation: Analyzing the Impact of Internet Banking on Profitability in the Saudi Arabian Banking Sector. Journal of Risk and Financial Management, 17(5), 174. doi:10.3390/jrfm17050174.
[19] Sujee, S., & Solanki, R. (2024). Adoption and Proliferation of Digital Technology in the Banking Sector of the Middle East. Handbook of Banking and Finance in the MENA Region, 3–23, World Scientific Publishing, Singapore. doi:10.1142/9781800614734_0001.
[20] Asiri, M. (2025). The impact of digital transformation on cash holding: evidence from Saudi Arabia. Digital Policy, Regulation and Governance. doi:10.1108/dprg-11-2024-0299.
[21] Kumar, D., & Suthar, N. (2024). Ethical and legal challenges of AI in marketing: an exploration of solutions. Journal of Information, Communication and Ethics in Society, 22(1), 124-144. doi:10.1108/JICES-05-2023-0068.
[22] Wu, X., Duan, R., & Ni, J. (2024). Unveiling security, privacy, and ethical concerns of ChatGPT. Journal of Information and Intelligence, 2(2), 102–115. doi:10.1016/j.jiixd.2023.10.007.
[23] Pool, J., Akhlaghpour, S., Fatehi, F., & Gray, L. C. (2022). Data privacy concerns and use of telehealth in the aged care context: An integrative review and research agenda. International Journal of Medical Informatics, 160. doi:10.1016/j.ijmedinf.2022.104707.
[24] Ly, B., & Ly, R. (2022). Internet banking adoption under Technology Acceptance Model—Evidence from Cambodian users. Computers in Human Behavior Reports, 7, 100224. doi:10.1016/j.chbr.2022.100224.
[25] Al-Emran, M., & Granić, A. (2021). Is It Still Valid or Outdated? A Bibliometric Analysis of the Technology Acceptance Model and Its Applications From 2010 to 2020. Recent Advances in Technology Acceptance Models and Theories, Studies in Systems, Decision and Control, 335, Springer, Cham, Switzerland. doi:10.1007/978-3-030-64987-6_1.
[26] Sewpaul, S. (2018). Digital Strategies Senior Bank Executives in Mauritius use to Improve Customer Service. PhD Thesis, Walden University, Minneapolis, United States.
[27] Sujood, Bano, N., & Siddiqui, S. (2024). Consumers’ intention towards the use of smart technologies in tourism and hospitality (T&H) industry: a deeper insight into the integration of TAM, TPB and trust. Journal of Hospitality and Tourism Insights, 7(3), 1412–1434. doi:10.1108/JHTI-06-2022-0267.
[28] Ben-Hafaïedh, C., Xheneti, M., Stenholm, P., Blackburn, R., Welter, F., & Urbano, D. (2024). The interplay of context and entrepreneurship: the new frontier for contextualisation research. Small Business Economics, 62(2), 571–582. doi:10.1007/s11187-023-00770-6.
[29] Herriger, C., Merlo, O., Eisingerich, A. B., & Arigayota, A. R. (2025). Context-Contingent Privacy Concerns and Exploration of the Privacy Paradox in the Age of AI, Augmented Reality, Big Data, and the Internet of Things: Systematic Review. Journal of Medical Internet Research, 27(1), 71951. doi:10.2196/71951.
[30] Huang, F., Teo, T., & Scherer, R. (2022). Investigating the antecedents of university students’ perceived ease of using the Internet for learning. Interactive Learning Environments, 30(6), 1060–1076. doi:10.1080/10494820.2019.1710540.
[31] Zhang, C., Schießl, J., Plößl, L., Hofmann, F., & Gläser-Zikuda, M. (2023). Acceptance of artificial intelligence among pre-service teachers: a multigroup analysis. International Journal of Educational Technology in Higher Education, 20(1), 49. doi:10.1186/s41239-023-00420-7.
[32] Zhou, L., Xue, S., & Li, R. (2022). Extending the Technology Acceptance Model to Explore Students’ Intention to Use an Online Education Platform at a University in China. Sage Open, 12(1), 21582440221085259. doi:10.1177/21582440221085259.
[33] Souiden, N., Ladhari, R., & Chaouali, W. (2021). Mobile banking adoption: a systematic review. International Journal of Bank Marketing, 39(2), 214–241. doi:10.1108/IJBM-04-2020-0182.
[34] Alshehri, M., Drew, S., Alhussain, T., & Alghamdi, R. (2012). The effects of website quality on adoption of E-government service: AnEmpirical study applying UTAUT model using SEM. arXiv preprint, arXiv:1211.2410. doi:10.48550/arXiv.1211.2410.
[35] Abed, S. S., & Alkadi, R. S. (2025). Consumer continuous use of and satisfaction with Fintech payment applications in Saudi Arabia: towards an integrated model. Journal of Financial Reporting and Accounting, 23(2), 496–517. doi:10.1108/JFRA-12-2023-0759.
[36] Albarrak, M. S., & Alokley, S. A. (2021). FinTech: Ecosystem, Opportunities and Challenges in Saudi Arabia. Journal of Risk and Financial Management, 14(10), 460. doi:10.3390/jrfm14100460.
[37] Rejali, S., Aghabayk, K., Esmaeli, S., & Shiwakoti, N. (2023). Comparison of technology acceptance model, theory of planned behavior, and unified theory of acceptance and use of technology to assess a priori acceptance of fully automated vehicles. Transportation Research Part A: Policy and Practice, 168, 103565. doi:10.1016/j.tra.2022.103565.
[38] Dong, H., Wang, H., & Han, J. (2022). Understanding Ecological Agricultural Technology Adoption in China Using an Integrated Technology Acceptance Model—Theory of Planned Behavior Model. Frontiers in Environmental Science, 10, 927668. doi:10.3389/fenvs.2022.927668.
[39] Alshurideh, M., Jdaitawi, A., Sukkari, L., Al-Gasaymeh, A., Alzoubi, H. M., Damra, Y., Yasin, S., Al Kurdi, B., & Alshurideh, H. (2024). Factors affecting ChatGPT use in education employing TAM: A Jordanian universities’ perspective. International Journal of Data and Network Science, 8(3), 1599–1606. doi:10.5267/j.ijdns.2024.3.007.
[40] Wilson, N., Keni, K., & Tan, P. H. P. (2021). The role of perceived usefulness and perceived ease-of-use toward satisfaction and trust which influence computer consumers’ loyalty in china. Gadjah Mada International Journal of Business, 23(3), 262–294. doi:10.22146/gamaijb.32106.
[41] Wang, K., van Hemmen, S. F., & Criado, J. R. (2022). The behavioural intention to use MOOCs by undergraduate students: incorporating TAM with TPB. International Journal of Educational Management, 36(7), 1321–1342. doi:10.1108/IJEM-11-2021-0446.
[42] Sujood, Bano, N., & Siddiqui, S. (2024). Consumers’ intention towards the use of smart technologies in tourism and hospitality (T&H) industry: a deeper insight into the integration of TAM, TPB and trust. Journal of Hospitality and Tourism Insights, 7(3), 1412–1434. doi:10.1108/JHTI-06-2022-0267.
[43] Park, I., Kim, D., Moon, J., Kim, S., Kang, Y., & Bae, S. (2022). Searching for New Technology Acceptance Model under Social Context: Analyzing the Determinants of Acceptance of Intelligent Information Technology in Digital Transformation and Implications for the Requisites of Digital Sustainability. Sustainability (Switzerland), 14(1), 1–29. doi:10.3390/su14010579.
[44] Davis, F. D., & Granić, A. (2024). The Technology Acceptance Model. In Human–Computer Interaction Series. Springer International Publishing, Cham, Switzerland. doi:10.1007/978-3-030-45274-2.
[45] Ge, Y., Qi, H., & Qu, W. (2023). The factors impacting the use of navigation systems: A study based on the technology acceptance model. Transportation Research Part F: Traffic Psychology and Behaviour, 93, 106–117. doi:10.1016/j.trf.2023.01.005.
[46] Silva, P. (2015). Davis’ Technology Acceptance Model (TAM) (1989). Information Seeking Behavior and Technology Adoption, 205–219, IGI Global Scientific Publishing, Hershey, United States. doi:10.4018/978-1-4666-8156-9.ch013.
[47] Wang, C., Ahmad, S. F., Bani Ahmad Ayassrah, A. Y. A., Awwad, E. M., Irshad, M., Ali, Y. A., Al-Razgan, M., Khan, Y., & Han, H. (2023). An empirical evaluation of technology acceptance model for Artificial Intelligence in E-commerce. Heliyon, 9(8), e18349. doi:10.1016/j.heliyon.2023.e18349.
[48] Mishra, A., Shukla, A., Rana, N. P., Currie, W. L., & Dwivedi, Y. K. (2023). Re-examining post-acceptance model of information systems continuance: A revised theoretical model using MASEM approach. International Journal of Information Management, 68, 102571. doi:10.1016/j.ijinfomgt.2022.102571.
[49] Bailey, D. R., Almusharraf, N., & Almusharraf, A. (2022). Video conferencing in the e-learning context: explaining learning outcome with the technology acceptance model. Education and Information Technologies, 27(6), 7679–7698. doi:10.1007/s10639-022-10949-1.
[50] Prastiawan, D. I., Aisjah, S., & Rofiaty, R. (2021). The Effect of Perceived Usefulness, Perceived Ease of Use, and Social Influence on the Use of Mobile Banking through the Mediation of Attitude Toward Use. Asia Pacific Management and Business Application, 009(03), 243–260. doi:10.21776/ub.apmba.2021.009.03.4.
[51] Trivedi, S. K., Patra, P., Srivastava, P. R., Kumar, A., & Ye, F. (2024). Exploring Factors Affecting Users’ Behavioral Intention to Adopt Digital Technologies: The Mediating Effect of Social Influence. IEEE Transactions on Engineering Management, 71, 13814–13826. doi:10.1109/TEM.2022.3182361.
[52] Chen, L., Jia, J., & Wu, C. (2023). Factors influencing the behavioral intention to use contactless financial services in the banking industry: An application and extension of UTAUT model. Frontiers in Psychology, 14. doi:10.3389/fpsyg.2023.1096709.
[53] Unal, E., & Uzun, A. M. (2021). Understanding university students’ behavioral intention to use Edmodo through the lens of an extended technology acceptance model. British Journal of Educational Technology, 52(2), 619–637. doi:10.1111/bjet.13046.
[54] Kaur, F. P. (2025). 10 Real-Life AI in Marketing Examples and Use Cases. Mailmodo, San Francisco, United States. Available online: https://www.mailmodo.com/guides/ai-in-marketing-examples/ (accessed on July 2025).
[55] Fundira, M., Edoun, E. I., & Pradhan, A. (2024). Evaluating end-users’ digital competencies and ethical perceptions of AI systems in the context of sustainable digital banking. Sustainable Development, 32(5), 4866–4878. doi:10.1002/sd.2945.
[56] Soetan, T. O., Mogaji, E., & Nguyen, N. P. (2021). Financial services experience and consumption in Nigeria. Journal of Services Marketing, 35(7), 947–961. doi:10.1108/JSM-07-2020-0280.
[57] Ogundipe, D. O., Odejide, O. A., & Edunjobi, T. E. (2024). Agile methodologies in digital banking: Theoretical underpinnings and implications for customer satisfaction. Open Access Research Journal of Science and Technology, 10(02), 021-030. doi:10.53022/oarjst.2024.10.2.0045.
[58] Chaimaa, B., Najib, E., & Rachid, H. (2020). E-banking Overview: Concepts, Challenges and Solutions. Wireless Personal Communications, 117(2), 1059–1078. doi:10.1007/s11277-020-07911-0.
[59] Etim, G. S., Ada, J. A., Eyo, I. E., Ndem, S. E., & James, E. E. (2023). Electronic banking and customers’ access to banking services in rural settlements. Resmilitaris, 13(3), 1161-1177.
[60] Hagger, M. S., Cheung, M. W. L., Ajzen, I., & Hamilton, K. (2022). Perceived Behavioral Control Moderating Effects in the Theory of Planned Behavior: A Meta-Analysis. Health Psychology, 41(2), 155–167. doi:10.1037/hea0001153.
[61] Vizano, N. A., Khamaludin, K., & Fahlevi, M. (2021). The Effect of Halal Awareness on Purchase Intention of Halal Food: A Case Study in Indonesia. Journal of Asian Finance, Economics and Business, 8(4), 441–453. doi:10.13106/jafeb.2021.vol8.no4.0441.
[62] Kaur, B., Kiran, S., Grima, S., & Rupeika-Apoga, R. (2021). Digital banking in northern India: The risks on customer satisfaction. Risks, 9(11), 209. doi:10.3390/risks9110209.
[63] Todua, N., & Gogitidze, N. (2024). Consumer Attitude Towards Digital Banking Services (Case of Georgia). International Journal of Professional Business Review, 9(11), e05096. doi:10.26668/businessreview/2024.v9i11.5096.
[64] Akhter, T., & Hoque, M. E. (2022). Moderating Effects of Financial Cognitive Abilities and Considerations on the Attitude–Intentions Nexus of Stock Market Participation. International Journal of Financial Studies, 10(1), 5. doi:10.3390/ijfs10010005.
[65] Ma, Y., Al Mamun, A., Hoque, M. E., Masukujjaman, M., & Ja’afar, R. (2025). Modeling behavioral insights to mobilize private investment in climate change adaptation: evidence from Chinese investors. Environment, Development and Sustainability. doi:10.1007/s10668-025-06058-x.
[66] Et. al., Dr. C. B. P. (2021). Factors Affecting Customers’ Perception towards Digital Banking Services. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(11), 1608–1614. doi:10.17762/turcomat.v12i11.6091.
[67] Sutisna, F., & Handra, T. (2022). Theory of Planned Behavior Influences Online Shopping Behavior. APTISI Transactions on Management (ATM), 6(1), 52–61. doi:10.33050/atm.v6i1.1691.
[68] Jermsittiparsert, K., Wongsuwan, N., & Akkaya, B. (2023). Subjective norms and behavioural intention of E-banking adoption: Mediating role of perceived usefulness. Two Faces of Digital Transformation: Technological Opportunities versus Social Threats, 177–193. doi:10.1108/978-1-83753-096-020231013.
[69] AlNahdi, T., Larabi, C., & Kayani, F. N. (2025). Behavioural Determinants of Smart Home Device Adoption: An Empirical Study in Jeddah, Saudi Arabia. Decision Making: Applications in Management and Engineering, 8(1), 295–305. doi:10.31181/dmame8120251351.
[70] Khan, I. U. (2022). How does culture influence digital banking? A comparative study based on the unified model. Technology in Society, 68, 101822. doi:10.1016/j.techsoc.2021.101822.
[71] Inder, S., Sood, K., & Grima, S. (2022). Antecedents of Behavioural Intention to Adopt Internet Banking Using Structural Equation Modelling. Journal of Risk and Financial Management, 15(4), 157. doi:10.3390/jrfm15040157.
[72] Irimia-Diéguez, A., Velicia-Martín, F., & Aguayo-Camacho, M. (2023). Predicting Fintech Innovation Adoption: the Mediator Role of Social Norms and Attitudes. Financial Innovation, 9(1), 36. doi:10.1186/s40854-022-00434-6.
[73] Sembada, A. Y., & Koay, K. Y. (2021). How perceived behavioral control affects trust to purchase in social media stores. Journal of Business Research, 130, 574–582. doi:10.1016/j.jbusres.2019.09.028.
[74] Asif, M., Khan, M. A., Alhumoudi, H., & Wasiq, M. (2023). Examining the Role of Self-Reliance, Social Domination, Perceived Surveillance, and Customer Support with Respect to the Adoption of Mobile Banking. International Journal of Environmental Research and Public Health, 20(5), 3854. doi:10.3390/ijerph20053854.
[75] Black, E. L., Burton, F. G., & Cieslewicz, J. K. (2022). Improving Ethics: Extending the Theory of Planned Behavior to Include Moral Disengagement. Journal of Business Ethics, 181(4), 945–978. doi:10.1007/s10551-021-04896-z.
[76] Kondybayeva, S., Daribayeva, M., Fiume, R., Abilda, S., Staroverova, O., Ponkratov, V., … Nikolaeva, I. (2024). A New Concept of Transforming Service: Impact of Generative Voice Chatbots on Customer Satisfaction and Banking Industry Productivity. Emerging Science Journal, 8(6), 2278–2311. doi:10.28991/ESJ-2024-08-06-09.
[77] Saif, M. A. M., Hussin, N., Husin, M. M., Alwadain, A., & Chakraborty, A. (2022). Determinants of the Intention to Adopt Digital-Only Banks in Malaysia: The Extension of Environmental Concern. Sustainability (Switzerland), 14(17), 1–32. doi:10.3390/su141711043.
[78] Dehghani, M., William Kennedy, R., Mashatan, A., Rese, A., & Karavidas, D. (2022). High interest, low adoption. A mixed-method investigation into the factors influencing organisational adoption of blockchain technology. Journal of Business Research, 149, 393–411. doi:10.1016/j.jbusres.2022.05.015.
[79] Wang, S., Asif, M., Shahzad, M. F., & Ashfaq, M. (2024). Data privacy and cybersecurity challenges in the digital transformation of the banking sector. Computers & Security, 147, 104051. doi:10.1016/j.cose.2024.104051.
[80] Ali, R. F., Dominic, P. D. D., Ali, S. E. A., Rehman, M., & Sohail, A. (2021). Information security behavior and information security policy compliance: a systematic literature review for identifying the transformation process from noncompliance to compliance. Applied Sciences (Switzerland), 11(8), 3383. doi:10.3390/app11083383.
[81] Hasbullah, M. A. (2022). Effects Of Individual (Perceived Identity Theft, Cognitive Trust, and Attitude) and Situational (Website Quality, Perceived Reputation, Social Presence) Factors on Online Purchase Intention: Moderating Role of Cyber Security. International Journal of Cyber Criminology, 16(2), 119–130.
[82] Liu, X. (2022). Research on consumers’ personal information security and perception based on digital twins and Internet of Things. Sustainable Energy Technologies and Assessments, 53, 102706. doi:10.1016/j.seta.2022.102706.
[83] Alnaim, A. F. (2022). Effects of individual (perceived identity theft, cognitive trust, and attitude) and situational (website quality, perceived reputation, social presence) factors on online purchase intention: moderating role of cyber security. International Journal of Cyber Criminology, 16(2), 131-148.
[84] Ann, L., Zu Yi, O. N. G., & Ning, S. H. (2024). Does Confidence Matters in Adopting Digital Banking Services? A Study on University Students'perception. Bachelor Thesis, Universiti Tunku Abdul Rahman, Petaling Jaya, Malaysia.
[85] Chan, R., Troshani, I., Rao Hill, S., & Hoffmann, A. (2022). Towards an understanding of consumers’ FinTech adoption: the case of Open Banking. International Journal of Bank Marketing, 40(4), 886–917. doi:10.1108/ijbm-08-2021-0397.
[86] Kelly, S., Kaye, S.-A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, 101925. doi:10.1016/j.tele.2022.101925.
[87] Alafreet Alkuwaiti, S. A. A. (2023). Developing a mediation relationship model of service quality, basic artificial intelligent and behavioural intention constructs in the use of artificial intelligent security technology in UAE. Ph.D. Thesis, Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia.
[88] Tran, V. D., & Nguyen, T. D. (2022). The impact of security, individuality, reputation, and consumer attitudes on purchase intention of online shopping: The evidence in Vietnam. Cogent Psychology, 9(1), 2035530. doi:10.1080/23311908.2022.2035530.
[89] Karim, R. Al, Sobhani, F. A., Rabiul, M. K., Lepee, N. J., Kabir, M. R., & Chowdhury, M. A. M. (2022). Linking Fintech Payment Services and Customer Loyalty Intention in the Hospitality Industry: The Mediating Role of Customer Experience and Attitude. Sustainability (Switzerland), 14(24), 16481. doi:10.3390/su142416481.
[90] Paul, E. O., Callistus, O., Somtobe, O., Esther, T., Somto, K.-A., Clement, O., & Ejimofor, I. (2023). Cybersecurity Strategies for Safeguarding Customer’s Data and Preventing Financial Fraud in the United States Financial Sectors. International Journal on Soft Computing, 14(3), 01–16. doi:10.5121/ijsc.2023.14301.
[91] Kim, C., Tao, W., Shin, N., & Kim, K. S. (2010). An empirical study of customers’ perceptions of security and trust in e-payment systems. Electronic Commerce Research and Applications, 9(1), 84–95. doi:10.1016/j.elerap.2009.04.014.
[92] Kim, D. J., Ferrin, D. L., & Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544–564. doi:10.1016/j.dss.2007.07.001.
[93] Baabdullah, A. M., Alalwan, A. A., Rana, N. P., Kizgin, H., & Patil, P. (2019). Consumer use of mobile banking (M-Banking) in Saudi Arabia: Towards an integrated model. International Journal of Information Management, 44, 38–52. doi:10.1016/j.ijinfomgt.2018.09.002.
[94] Alsumayt, A., Elbeh, H., Elkawkagy, M., Alfawaer, Z., Alghamedy, F. H., Alshammari, M., … Alamoudi, K. (2024). A Study of Android Security Vulnerabilities and Their Future Prospects. HighTech and Innovation Journal, 5(3), 854–869. doi:10.28991/HIJ-2024-05-03-020.
[95] Bhatnagr, P., & Rajesh, A. (2025). Online customer experience in Indian digital banks impacting continuous intention usage: Generation Y and Z perspective. Journal of Financial Reporting and Accounting, 23(2), 830–850. doi:10.1108/JFRA-11-2023-0638.
[96] Abbas, N., & Khan, H. G. M. (2024). The Role of Financial Literacy and Technology savviness on Fintech Adoption in Traditional Banking, the Mediating Role of Trust in Technology. Pakistan Journal of Humanities and Social Sciences, 12, 3183–3191. doi:10.52131/pjhss.2024.v12i4.2577.
[97] Rajaobelina, L., Brun, I., Line, R., & Cloutier-Bilodeau, C. (2021). Not all elderly are the same: fostering trust through mobile banking service experience. International Journal of Bank Marketing, 39(1), 85–106. doi:10.1108/IJBM-05-2020-0288.
[98] Melnyk, V. (2023). Transforming the nature of trust between banks and young clients: from traditional to digital banking. Qualitative Research in Financial Markets, 16(4), 618–635. doi:10.1108/qrfm-08-2022-0129.
[99] Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. doi:10.2307/249008.
[100] Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. doi:10.1016/0749-5978(91)90020-t.
[101] Harris, R. J. (2001). A Primer of Multivariate Statistics. Psychology Press, New York, United States. doi:10.4324/9781410600455.
[102] Cheng, T. C. E., Lam, D. Y. C., & Yeung, A. C. L. (2006). Adoption of internet banking: An empirical study in Hong Kong. Decision Support Systems, 42(3), 1558–1572. doi:10.1016/j.dss.2006.01.002.
[103] Sharifuddin, J., Ramalingam, L., Mohamed, Z., & Rezai, G. (2014). Factors Affecting Intention to Purchase Edible Bird’s Nest Products: The Case of Malaysian Consumers. Journal of Food Products Marketing, 20(Sup1), 75–84. doi:10.1080/10454446.2014.946169
[104] Ringle, C. M., Wende, S., & Becker, J. M. (2022). SmartPLS 4. Oststeinbek: SmartPLS GmbH. Available online: https://www.smartpls.com/ (accessed on July 2025)
[105] Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study. Information Systems Research, 14(2), 189–217. doi:10.1287/isre.14.2.189.16018
[106] Anderson, J. C., & Gerbing, D. W. (1988). Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychological Bulletin, 103(3), 411–423. doi:10.1037/0033-2909.103.3.411.
[107] Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. Classroom Companion: Business. Springer International Publishing, Springer, Cham, Switzerland. doi:10.1007/978-3-030-80519-7.
[108] Memon, M. A., Cheah, J. H., Ramayah, T., Ting, H., Chuah, F., & Cham, T. H. (2019). Moderation analysis: issues and guidelines. Journal of Applied Structural Equation Modeling, 3(1), 1-11.
[109] Fuchs, S. (2012). Common Method Variance Analysis of Structural Models. Understanding Psychological Bonds between Individuals and Organizations, 119–165. doi:10.1057/9781137033970_6.
[110] Kock, N., & Lynn, G. S. (2012). Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. Journal of the Association for Information Systems, 13(7), 546–580. doi:10.17705/1jais.00302.
[111] Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of E-Collaboration, 11(4), 1–10. doi:10.4018/ijec.2015100101.
[112] Darsono, N., Yahya, A., Muzammil, A., Musnadi, S., Anwar, C., & Irawati, W. (2019). Consumer Actual Purchase Behavior for Organic Products in Aceh, Indonesia. Proceedings of the 1st Aceh Global Conference (AGC 2018), 265-275. doi:10.2991/agc-18.2019.43.
[113] Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. doi:10.1177/002224378101800104.
[114] Hahn, E. D., & Ang, S. H. (2017). From the editors: New directions in the reporting of statistical results in the Journal of World Business. Journal of World Business, 52(2), 125–126. doi:10.1016/j.jwb.2016.12.003.
[115] Becker, J. M., Cheah, J. H., Gholamzade, R., Ringle, C. M., & Sarstedt, M. (2023). PLS-SEM’s most wanted guidance. International Journal of Contemporary Hospitality Management, 35(1), 321–346. doi:10.1108/IJCHM-04-2022-0474.
[116] Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J. H., Ting, H., Vaithilingam, S., & Ringle, C. M. (2019). Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. European Journal of Marketing, 53(11), 2322–2347. doi:10.1108/EJM-02-2019-0189.
[117] Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. doi:10.1108/EBR-11-2018-0203.
[118] Daly, J. C., & Cohen, J. (1978). Statistical Power Analysis for the Behavioral Sciences, Revised Edition. Journal of the American Statistical Association, 73(363), 680. doi:10.2307/2286629.
[119] Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences. Routledge, New York, United States. doi:10.4324/9780203771587.
[120] AlQershi, N., Mokhtar, S. S. M., & Abas, Z. (2022). The influence of structural capital on the relationship between CRM implementation and the performance of manufacturing SMEs. International Journal of System Assurance Engineering and Management, 13(3), 1205–1218. doi:10.1007/s13198-021-01417-z.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
