Microstructural and Elemental Characterization of TPU/Jute CNFs Nanocomposites via FESEM and EDX Analysis
Downloads
This study aims to investigate the microstructural and elemental characteristics of thermoplastic polyurethane (TPU) nanocomposites reinforced with jute cellulose nanofibers (CNFs), with the objective of understanding the dispersion behavior and interfacial interactions within the polymer matrix. CNFs were extracted from jute fibers through a chemo-mechanical process involving alkaline treatment, acid hydrolysis, bleaching, and high-energy milling, followed by melt blending with TPU to fabricate nanocomposites at varying filler loadings (1–5 wt%). Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray (EDX) spectroscopy were employed to analyze the surface morphology and elemental distribution of the nanocomposites. The FESEM results revealed that uniform CNF dispersion was achieved up to 4 wt%, beyond which noticeable agglomeration occurred. EDX analysis confirmed the successful incorporation of CNFs and identified performance-enhancing elements such as Si, Ca, Na, and Al in the reinforcement phase. These findings suggest that CNF content strongly influences microstructure and bonding quality, which are key factors for mechanical performance. The novelty of this work lies in its exclusive focus on microstructural and elemental characterization—providing essential insight into filler distribution and matrix compatibility—offering a foundation for optimizing sustainable, high-performance TPU/CNF nanocomposites for advanced industrial applications.
Downloads
[1] Martin, D. J., Osman, A. F., Andriani, Y., & Edwards, G. A. (2012). Thermoplastic polyurethane (TPU)-based polymer nanocomposites. Advances in Polymer Nanocomposites, 321–350, Woodhead Publishing, Sawston, United Kingdom. doi:10.1533/9780857096241.2.321.
[2] Behera, P. K., Dhamaniya, S., Mohanty, S., & Gupta, V. (2024). Advances in thermoplastic polyurethane elastomers. Advances in Thermoplastic Elastomers, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-323-91758-2.00014-3.
[3] Siti Syazwani, N., Ervina Efzan, M. N., Kok, C. K., Aeslina, A. K., & Sivaraman, V. (2021). Microstructure and Mechanical Properties of Thermoplastic Polyurethane/Jute Cellulose Nanofibers (CNFs) Nanocomposites. Recent Trends in Manufacturing and Materials Towards Industry 4.0, 805–816. doi:10.1007/978-981-15-9505-9_71.
[4] Kim, Y., Huh, P. H., & Yoo, S. Il. (2023). Mechanical Reinforcement of Thermoplastic Polyurethane Nanocomposites by Surface-Modified Nanocellulose. Macromolecular Chemistry and Physics, 224(4), 202200383. doi:10.1002/macp.202200383.
[5] Azzra, N. A., Atiqah, A., Fadhlina, H., Jalar, A., Bakar, M. A., Ismail, A. G., & Supian, A. B. M. (2024). Effect of nanofibril cellulose empty fruit bunch-reinforced thermoplastic polyurethane nanocomposites on tensile and dynamic mechanical properties for flexible substrates. Polymer Composites, 45(16), 14633–14643. doi:10.1002/pc.28788.
[6] Ervina Efzan, M. N., & Siti Syazwani, N. (2018). A Review on Effect of Nanoreinforcement on Mechanical Properties of Polymer Nanocomposites. Solid State Phenomena, 280, 284–293. doi:10.4028/www.scientific.net/ssp.280.284.
[7] Barik, B., Maji, B., Sarkar, D., Mishra, A. K., & Dash, P. (2022). Cellulose-based nanomaterials for textile applications. Bio-Based Nanomaterials, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-323-85148-0.00009-9.
[8] Yu, L., Lin, J., Tian, F., Li, X., Bian, F., & Wang, J. (2014). Cellulose nanofibrils generated from jute fibers with tunable polymorphs and crystallinity. Journal of Materials Chemistry A, 2(18), 6402. doi:10.1039/c4ta00004h.
[9] Efzan, E., Kok, C. K., & Nurhidayatullaili, M. J. (2024). Synthesis of cellulose nanofibers from jute fiber by using chemomechanical method. F1000Research, 13, 40. doi:10.12688/f1000research.138665.1.
[10] Mohd Amin, K. N., Chaleat, C., Edwards, G., Martin, D. J., & Annamalai, P. K. (2022). A cleaner processing approach for cellulose reinforced thermoplastic polyurethane nanocomposites. Polymer Engineering and Science, 62(3), 949–961. doi:10.1002/pen.25899.
[11] Mi, H. Y., Jing, X., Salick, M. R., Cordie, T. M., & Turng, L. S. (2016). Carbon nanotube (CNT) and nanofibrillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent. Journal of the Mechanical Behavior of Biomedical Materials, 62, 417–427. doi:10.1016/j.jmbbm.2016.05.026.
[12] Li, X., Li, J., Wang, J., Yuan, J., Jiang, F., Yu, X., & Xiao, F. (2021). Recent applications and developments of Polyurethane materials in pavement engineering. Construction and Building Materials, 304, 124639. doi:10.1016/j.conbuildmat.2021.124639.
[13] Sun, X., Yang, X., Zhang, J., Shang, B., Lyu, P., Zhang, C., Liu, X., & Xia, L. (2023). Fabrication of Silane-Grafted Cellulose Nanocrystals and Their Effects on the Structural, Thermal, Mechanical, and Hysteretic Behavior of Thermoplastic Polyurethane. International Journal of Molecular Sciences, 24(5), 5036. doi:10.3390/ijms24055036.
[14] Fortunati, E., Luzi, F., Janke, A., Häußler, L., Pionteck, J., Kenny, J. M., & Torre, L. (2017). Reinforcement effect of cellulose nanocrystals in thermoplastic polyurethane matrices characterized by different soft/hard segment ratio. Polymer Engineering & Science, 57(6), 521–530. doi:10.1002/pen.24532.
[15] Ye, J., Si, J., Cui, Z., Wang, Q., Peng, K., Chen, W., Peng, X., & Chen, S. (2017). Surface Modification of Electrospun TPU Nanofiber Scaffold with CNF Particles by Ultrasound‐Assisted Technique for Tissue Engineering. Macromolecular Materials and Engineering, 302(11). doi:10.1002/mame.201700277.
[16] Yu, R., M.N., P., Feng, J., Yang, Y., Hong, S. H., & Song, J. il. (2025). Enhancing the mechanical properties of flax fiber-reinforced epoxy composites through cellulose nanofiber incorporation. Industrial Crops and Products, 223. doi:10.1016/j.indcrop.2024.120113.
[17] Ci, Y., Lv, D., Yang, X., Du, H., & Tang, Y. (2024). High-performance cellulose/thermoplastic polyurethane composites enabled by interaction-modulated cellulose regeneration. Carbohydrate Polymers, 346, 122611. doi:10.1016/j.carbpol.2024.122611.
[18] Mei, S., Xu, B., Wan, J., & Chen, J. (2024). Preparation of CNT/CNF/PDMS/TPU Nanofiber-Based Conductive Films Based on Centrifugal Spinning Method for Strain Sensors. Sensors, 24(12), 4026. doi:10.3390/s24124026.
[19] Nordi, S. S., Noor, E. E. M., Kok, C. K., Julkapli, N. M., & Baig, M. F. (2025). Phase, Chemical, Thermal, and Morphological Analyses of Thermoplastic Polyurethane (TPU) Nanocomposites Reinforced with Jute Cellulose Nanofibers (CNFs). Polymers, 17(7). doi:10.3390/polym17070899.
[20] Ahuja, D., Kumar, L., Jain, S., Nahak, B., & Kaushik, A. (2025). Transforming jute waste into high-performance biodegradable polyurethane bionanocomposites. Cellulose, 1-20. doi:10.1007/s10570-025-06653-1.
[21] Pedrazzoli, D., & Manas-Zloczower, I. (2016). Understanding phase separation and morphology in thermoplastic polyurethanes nanocomposites. Polymer, 90, 256–263. doi:10.1016/j.polymer.2016.03.022.
[22] Collado, I., Jiménez-Suárez, A., Vázquez-López, A., del Rosario, G., & Prolongo, S. G. (2024). Ultrasonication Influence on the Morphological Characteristics of Graphene Nanoplatelet Nanocomposites and Their Electrical and Electromagnetic Interference Shielding Behavior. Polymers, 16(8), 1068. doi:10.3390/polym16081068.
[23] Rahmati, A., Balouch Sirgani, A., Molaei, M., & Karimipour, M. (2014). Cu-doped ZnO nanoparticles synthesized by simple co-precipitation route. The European Physical Journal Plus, 129(11), 250. doi:10.1140/epjp/i2014-14250-8.
[24] Nordin, S. S., Mhd Noor, E. E., Muhd Julkapli, N., & Abdul Kadir, A. (2024). Study on the Effect of Jute CNFs Addition on the Water Absorption and Mechanical Properties of Geopolymer Concrete. Buildings, 14(11), 3444. doi:10.3390/buildings14113444.
[25] Siti Syazwani, N., Ervina Efzan, M. N., Kok, C. K., & Nurhidayatullaili, M. J. (2022). Analysis on extracted jute cellulose nanofibers by Fourier transform infrared and X-Ray diffraction. Journal of Building Engineering, 48. doi:10.1016/j.jobe.2021.103744.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















