Real-Time FPGA-Based ADAS Solution for Driver Drowsiness Detection and Autonomous Stopping
Downloads
This study addresses driver drowsiness, a leading cause of traffic accidents, by developing a real-time Advanced Driver Assistance System that integrates biometric detection and autonomous vehicle control. The objective of this study is to enhance road safety through the early detection of drowsiness and automated intervention. The proposed system detects signs of drowsiness by monitoring facial and ocular features using a real-time video stream. Once a predefined threshold is exceeded, an audible alert is triggered. If the driver remains unresponsive, the system gradually reduces the vehicle’s speed and initiates an automated stop procedure. Methodologically, the system employs OpenCV for image processing and a convolutional neural network for lane detection and vehicle control. It is implemented on a high-performance hardware platform using field-programmable gate arrays programmed via Vivado High-Level Synthesis to ensure low-latency operation. The results confirm the system’s real-time capability, accuracy in drowsiness detection, and effective vehicle control under drowsy driving conditions. The system’s novelty lies in its combination of biometric monitoring, deep learning, and hardware acceleration to provide faster and more reliable intervention than existing Advanced Driver Assistance System technologies. This integration sets a new benchmark for proactive road safety measures.
Downloads
[1] Sutherland, C., Smallwood, A., Wootten, T., & Redfern, N. (2023). Fatigue and its impact on performance and health. British Journal of Hospital Medicine, 84(2), 1–8. doi:10.12968/hmed.2022.0548.
[2] Dinges, D. F. (1995). An overview of sleepiness and accidents. Journal of Sleep Research, 4(s2), 4–14. doi:10.1111/j.1365-2869.1995.tb00220.x.
[3] NHTSA. (2021). Drowsy-driving. National Highway Traffic Safety Administration (NHTSA), Washington, United States. Available online: https://www.nhtsa.gov/book/countermeasures-that-work/drowsy-driving (accessed on September 2025).
[4] MDhealth (2023). Why falling asleep when driving happens and how to handle it. MDhealth, London, United Kingdom. Available online: https://www.md-health.com/Falling-Asleep-While-Driving (accessed on September 2025).
[5] Arun, S., Murugappan, M., & Sundaraj, K. (2011). Hypovigilance warning system: A review on driver alerting techniques. 2011 IEEE Control and System Graduate Research Colloquium, 65–69. doi:10.1109/icsgrc.2011.5991831.
[6] Almomany, A., Al-Omari, A. M., Jarrah, A., Tawalbeh, M., & Alqudah, A. (2020). An OpenCL-based parallel acceleration of a sobel edge detection algorithm using intel FPGA technology. South African Computer Journal, 32(1), 3–26. doi:10.18489/sacj.v32i1.749.
[7] Almomany, A., Ayyad, W. R., & Jarrah, A. (2022). Optimized implementation of an improved KNN classification algorithm using Intel FPGA platform: Covid-19 case study. Journal of King Saud University - Computer and Information Sciences, 34(6), 3815–3827. doi:10.1016/j.jksuci.2022.04.006.
[8] Almomany, A., Jarrah, A., & Al Assaf, A. (2022). FCM Clustering Approach Optimization Using Parallel High-Speed Intel FPGA Technology. Journal of Electrical and Computer Engineering, 2022, 1–11. doi:10.1155/2022/8260283.
[9] Almomany, A., Jarrah, A., & Al Assaf, A. (2023). Accelerating FCM Algorithm Using High-Speed FPGA Reconfigurable Computing Architecture. Journal of Electrical Engineering & Technology, 18(4), 3209–3217. doi:10.1007/s42835-023-01432-z.
[10] Almomany, A., Sutcu, M., & Ibrahim, B. S. K. S. M. K. (2024). Accelerating electrostatic particle-in-cell simulation: A novel FPGA-based approach for efficient plasma investigations. PLOS ONE, 19(6), e0302578. doi:10.1371/journal.pone.0302578.
[11] Husejko, M., Evans, J., & Rasteiro Da Silva, J. C. (2015). Investigation of High-Level Synthesis tools’ applicability to data acquisition systems design based on the CMS ECAL Data Concentrator Card example. Journal of Physics: Conference Series, 664(8), 082019. doi:10.1088/1742-6596/664/8/082019.
[12] Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A. E., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11). doi:10.1016/j.heliyon.2018.e00938.
[13] Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 24–49. doi:10.1016/j.isprsjprs.2020.12.010.
[14] Zhiqiang, W., & Jun, L. (2017). A review of object detection based on convolutional neural network. 2017 36th Chinese Control Conference (CCC), 11104–11109. doi:10.23919/chicc.2017.8029130.
[15] Khan, M., Chakraborty, S., Astya, R., & Khepra, S. (2019). Face Detection and Recognition Using OpenCV. 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), 116–119. doi:10.1109/icccis48478.2019.8974493.
[16] Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR, 511-518. doi:10.1109/cvpr.2001.990517.
[17] Nixon, M. S., & Aguado, A. S. (2020). Image processing. Feature Extraction and Image Processing for Computer Vision, 83–139, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-814976-8.00003-8.
[18] Dahirou, Z., Zheng, M., & Yuxin, M. (2020). Face Detection with Viola Jones Algorithm. 2020 7th International Conference on Information Science and Control Engineering (ICISCE), 602–606. doi:10.1109/icisce50968.2020.00130.
[19] Singh, V. K., Shrivastava, U., Bouayad, L., Padmanabhan, B., Ialynytchev, A., & Schultz, S. K. (2018). Machine learning for psychiatric patient triaging: An investigation of cascading classifiers. Journal of the American Medical Informatics Association, 25(11), 1481–1487. doi:10.1093/jamia/ocy109.
[20] Madhuri, K., & UmaMaheswari, B. (2019). Adaptive steering control and driver alert system for smart vehicles. Proceedings of the 3rd International Conference on Computing Methodologies and Communication, ICCMC 2019, 208–213. doi:10.1109/ICCMC.2019.8819636.
[21] Parashar, D., & Jadaun, A. (2022). Driver drowsiness detection system using machine learning. YMER Digital, 21(05), 962–965. doi:10.37896/ymer21.05/a8.
[22] Lu, K., Karlsson, J., Dahlman, A. S., Sjoqvist, B. A., & Candefjord, S. (2022). Detecting Driver Sleepiness Using Consumer Wearable Devices in Manual and Partial Automated Real-Road Driving. IEEE Transactions on Intelligent Transportation Systems, 23(5), 4801–4810. doi:10.1109/TITS.2021.3127944.
[23] Beles, H., Vesselenyi, T., Rus, A., Mitran, T., Scurt, F. B., & Tolea, B. A. (2024). Driver Drowsiness Multi-Method Detection for Vehicles with Autonomous Driving Functions. Sensors, 24(5), 1541. doi:10.3390/s24051541.
[24] Daza, I. G., Bergasa, L. M., Bronte, S., Javier Yebes, J., Almazán, J., & Arroyo, R. (2014). Fusion of optimized indicators from advanced driver assistance systems (ADAS) for driver drowsiness detection. Sensors (Switzerland), 14(1), 1106–1131. doi:10.3390/s140101106.
[25] Yang, E., & Yi, O. (2024). Enhancing Road Safety: Deep Learning-Based Intelligent Driver Drowsiness Detection for Advanced Driver-Assistance Systems. Electronics (Switzerland), 13(4), 708–726. doi:10.3390/electronics13040708.
[26] Ahmed, M. A., Hussein, H. A., Omar, M. B., & Hameed, Q. A. (2022). Real Time Driver Drowsiness Detection Based on Convolution Neural Network. Journal of Algebraic Statistics, 13(2), 2006-2012.
[27] Gupta, A., Kumar, S., Kumar, R., & Partheeban, N. (2020). Driver drowsiness detection system with OpenCV & Keras. IOSR Journal of Computer Engineering, 22(2), 12–18.
[28] Koo, Y., Kim, J., & Han, W. (2015). A method for driving control authority transition for cooperative autonomous vehicle. 2015 IEEE Intelligent Vehicles Symposium (IV), 394–399. doi:10.1109/ivs.2015.7225717.
[29] Thulasimani, L., Poojeevan, P., & Prithashasni, P. S. (2021). Real Time Driver Drowsiness Detection using OpenCV and Facial Landmarks. The Journal of Contemporary Issues in Business and Government, 27(6), 649–664. doi:10.47750/cibg.2021.27.06.054.
[30] Correia, A. P., Llanos, C. H., Carvalho, R. W. de, Alfaro, S. A., Koike, C., & Moreno, E. D. (2010). A Control Design Approach for Controlling an Autonomous Vehicle with FPGAs. Journal of Computers, 5(3). doi:10.4304/jcp.5.3.360-371.
[31] Cong, J., Fang, Z., Lo, M., Wang, H., Xu, J., & Zhang, S. (2018). Understanding Performance Differences of FPGAs and GPUs. 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 93–96. doi:10.1109/fccm.2018.00023.
[32] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., & Zieba, K. (2016). End to End Learning for Self-Driving Cars. doi:10.48550/arXiv.1604.07316.
[33] Asano, S., Maruyama, T., & Yamaguchi, Y. (2009). Performance comparison of FPGA, GPU and CPU in image processing. 2009 International Conference on Field Programmable Logic and Applications. doi:10.1109/fpl.2009.5272532.
[34] Valcan, S., & Gaianu, M. (2021). Ground truth data generator for eye location on infrared driver recordings. Journal of Imaging, 7(9), 162. doi:10.3390/jimaging7090162.
[35] Kim, D., Park, H., Kim, T., Kim, W., & Paik, J. (2023). Real-time driver monitoring system with facial landmark-based eye closure detection and head pose recognition. Scientific Reports, 13(1), 18264. doi:10.1038/s41598-023-44955-1.
[36] Han, J. H., & Ju, D. Y. (2021). Advanced alarm method based on driver’s state in autonomous vehicles. Electronics (Switzerland), 10(22), 2796. doi:10.3390/electronics10222796.
[37] Ohkawa, T., Yamashina, K., Kimura, H., Ootsu, K., & Yokota, T. (2018). FPGA Components for Integrating FPGAs into Robot Systems. IEICE Transactions on Information and Systems, E101.D(2), 363–375. doi:10.1587/transinf.2017rcp0011.
[38] Aladem, M., & Rawashdeh, S. A. (2021). A single-stream segmentation and depth prediction CNN for autonomous driving. IEEE Intelligent Systems, 36(4), 79–85. doi:10.1109/MIS.2020.2993266.
[39] Lade, S., Shrivastav, P., Waghmare, S., Hon, S., Waghmode, S., & Teli, S. (2021). Simulation of Self Driving Car Using Deep Learning. 2021 International Conference on Emerging Smart Computing and Informatics (ESCI-2021), 175–180. doi:10.1109/esci50559.2021.9396941.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















