Integrated AI, IoT, and Blockchain for Enhancing Security and Traceability in Perishable Logistics
Downloads
The perishability of food products in the supply chain poses a significant challenge in ensuring quality and safety. Inefficient monitoring of temperature, humidity, and storage time results in substantial economic losses and increased health risks. Traditional traceability systems rely on manual audits or essential IoT platforms that lack predictive capabilities, leading to delayed anomaly detection and inefficient intervention. Blockchain-based solutions improve transparency but primarily focus on record verification rather than active anomaly detection and automated decision-making. This study proposes an integrated system combining Artificial Intelligence (AI), the Internet of Things (IoT), and blockchain to optimize food traceability through real-time monitoring, predictive analytics, and secure decentralized record management. The system deploys smart sensors across storage and transportation units to continuously collect environmental data, which is processed by a deep learning model trained to detect deviations with 92.4 % accuracy. Detected anomalies trigger automated responses via smart contracts in a blockchain network, ensuring immediate corrective actions while maintaining immutable audit records. Results demonstrate a 64.3 % reduction in response time, improving reaction efficiency to critical storage failures. Additionally, false positive alerts decreased by 73.1 %, optimizing operational efficiency and minimizing unnecessary interventions. The blockchain implementation reduced storage overhead by 76.9%, ensuring scalability and long-term feasibility. This research establishes a foundation for intelligent, automated food supply chain management, demonstrating that integrating AI, IoT, and blockchain enhances safety, reduces waste, and optimizes logistics. Future work will focus on improvements in large-scale deployment and computational efficiency to refine this innovative approach.
Downloads
[1] Babu, S., & Devarajan, H. (2023). Agro-Food Supply Chain Traceability using Blockchain and IPFS. International Journal of Advanced Computer Science and Applications, 14(1), 393–399. doi:10.14569/IJACSA.2023.0140142.
[2] Aguiar, M. L., Gaspar, P. D., Silva, P. D., Domingues, L. C., & Silva, D. M. (2022). Real-Time Temperature and Humidity Measurements during the Short-Range Distribution of Perishable Food Products as a Tool for Supply-Chain Energy Improvements. Processes, 10(11), 2286. doi:10.3390/pr10112286.
[3] Lee, C., Kim, J., Ko, H., & Yoo, B. (2024). Addressing IoT storage constraints: A hybrid architecture for decentralized data storage and centralized management. Internet of Things (Netherlands), 25. doi:10.1016/j.iot.2023.101014.
[4] Marini, R., Mikhaylov, K., Pasolini, G., & Buratti, C. (2021). LoRaWANSim: A Flexible Simulator for LoRaWAN Networks. Sensors, 21(3), 695. doi:10.3390/s21030695.
[5] Jabbar, W. A., Mei Ting, T., I. Hamidun, M. F., Che Kamarudin, A. H., Wu, W., Sultan, J., Alsewari, A. R. A., & Ali, M. A. H. (2024). Development of LoRaWAN-based IoT system for water quality monitoring in rural areas. Expert Systems with Applications, 242. doi:10.1016/j.eswa.2023.122862.
[6] Susanty, A., Puspitasari, N. B., Rosyada, Z. F., Pratama, M. A., & Kurniawan, E. (2024). Design of blockchain-based halal traceability system applications for halal chicken meat-based food supply chain. International Journal of Information Technology (Singapore), 16(3), 1449–1473. doi:10.1007/s41870-023-01650-8.
[7] Hong, Z., & Xiao, K. (2024). Digital economy structuring for sustainable development: the role of blockchain and artificial intelligence in improving supply chain and reducing negative environmental impacts. Scientific Reports, 14(1), 3912. doi:10.1038/s41598-024-53760-3.
[8] Bidve, V., Hamine, A., Akre, S., Ghan, Y., Sarasu, P., & Pakle, G. (2024). Blockchain based drug supply chain for decentralized network. Indonesian Journal of Electrical Engineering and Computer Science, 33(1), 485-495. doi:10.11591/ijeecs.v33.i1.pp485-495.
[9] Quiroz-Flores, J. C., Aguado-Rodriguez, R. J., Zegarra-Aguinaga, E. A., Collao-Diaz, M. F., & Flores-Perez, A. E. (2024). Industry 4.0, circular economy and sustainability in the food industry: a literature review. International Journal of Industrial Engineering and Operations Management, 6(1), 1–24. doi:10.1108/IJIEOM-12-2022-0071.
[10] Liu, Y., Zhang, K., Wang, Q., & Liu, M. (2022). Construction of Fresh Agricultural Product Supply Chain Traceability Platform Based on Alliance Blockchain. 2022 3rd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), 558–561. doi:10.1109/icbaie56435.2022.9985805.
[11] Tang, S., Wang, Z., & Ge, S. (2022). Application Research on Quality Improvement of Agricultural Industry Chain Based on Blockchain Technology. 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC), 930–934. doi:10.1109/icnisc57059.2022.00187.
[12] Sarkar, S., Akshatha, K. S., Saurabh, A., Samanvitha, B., & Sarwar, M. F. (2022). IoT Enabled Cold Supply Chain Monitoring System. 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT), 1–6. doi:10.1109/gcat55367.2022.9972137.
[13] Javadi, B., Dadashi, N., Yazdi, F., & Reza Abdali, M. (2024). Application of Internet of Things (IoT) to Food Supply Chain Under Uncertainty-Case: Traditional Dairy Products. IEEE Access, 12, 102702–102717. doi:10.1109/ACCESS.2024.3432325.
[14] Fiore, M., & Mongiello, M. (2023). Blockchain Technology to Support Agri-Food Supply Chains: A Comprehensive Review. IEEE Access, 11, 75311–75324. doi:10.1109/ACCESS.2023.3296849.
[15] Ramkumar, G., Kasat, K., Khader P, R. A., Muhammed P K, N., Raghu, T., & Chhabra, S. (2022). Quality enhanced framework through integration of blockchain with supply chain management. Measurement: Sensors, 24. doi:10.1016/j.measen.2022.100462.
[16] Rath, K. C., Khang, A., & Roy, D. (2024). The Role of Internet of Things (IoT) Technology in Industry 4.0 Economy. Advanced IoT Technologies and Applications in the Industry 4.0 Digital Economy, 1–28, CRC Press, Boca Raton, United States. doi:10.1201/9781003434269-1.
[17] Figueroa, N. T. E., Priya, V. A., Shanmugam, S. K., Kumar, K. V., Sengan, S., & Bolivar, A. M. C. (2024). Adaptive Approach to Anomaly Detection in Internet of Things using Autoencoders and Dynamic Thresholds. Journal of Machine and Computing, 4(1), 1–10. doi:10.53759/7669/jmc202404001.
[18] Liu, Z., Ren, L., Feng, Y., Wang, S., & Wei, J. (2023). Data Integrity Audit Scheme Based on Quad Merkle Tree and Blockchain. IEEE Access, 11, 59263–59273. doi:10.1109/ACCESS.2023.3240066.
[19] Yele, S., & Litoriya, R. (2024). Blockchain-based secure dining: Enhancing safety, transparency, and traceability in food consumption environment. Blockchain: Research and Applications, 5(2), 100187. doi:10.1016/j.bcra.2023.100187.
[20] Tao, Z., & Chao, J. (2024). The impact of a blockchain-based food traceability system on the online purchase intention of organic agricultural products. Innovative Food Science and Emerging Technologies, 92. doi:10.1016/j.ifset.2024.103598.
[21] Psomatakis, M., Papadimitriou, K., Souliotis, A., Drosinos, E. H., & Papadopoulos, G. (2024). Food Safety and Management System Audits in Food Retail Chain Stores in Greece. Foods, 13(3), 457. doi:10.3390/foods13030457.
[22] Bonaldo, F., Avot, B. J. P., De Cesare, A., Aarestrup, F. M., & Otani, S. (2024). Foodborne Pathogen Dynamics in Meat and Meat Analogues Analysed Using Traditional Microbiology and Metagenomic Sequencing. Antibiotics, 13(1), 16. doi:10.3390/antibiotics13010016.
[23] Asonye, E. A., Musa, S. M., Akujuobi, C. M., Sadiku, M. N. O., & Foreman, J. (2020). Realizing an IOT-based home area network model using zigbee in the global environment. International Journal of Computing and Digital Systems, 9(6), 1131–1141. doi:10.12785/ijcds/0906011.
[24] Lembo, S., Kokkoniemi-Tarkkanen, H., & Horsmanheimo, S. (2020). Communication supervision function for verticals in 4G networks and beyond: Traffic anomaly detection from aggregated LTE MAC layer reports using a LSTM-RNN. 2020 IEEE International Black Sea Conference on Communications and Networking, BlackSeaCom, 9234967. doi:10.1109/BlackSeaCom48709.2020.9234967.
[25] AlGhamdi, R., Alassafi, M. O., Alshdadi, A. A., Dessouky, M. M., Ramdan, R. A., & Aboshosha, B. W. (2023). Developing Trusted IoT Healthcare Information-Based AI and Blockchain. Processes, 11(1), 34. doi:10.3390/pr11010034.
[26] Yu, J., Ge, L., & Wu, M. (2024). Proposal Distribution optimization for Endorsement Strategy in Hyperledger Fabric. Journal of Supercomputing, 80(10), 15038–15065. doi:10.1007/s11227-024-06056-2.
[27] Sharma, P., Jindal, R., & Borah, M. D. (2024). Blockchain-based distributed application for multimedia system using Hyperledger Fabric. Multimedia Tools and Applications, 83(1), 2473–2499. doi:10.1007/s11042-023-15690-6.
[28] Liu, Y., Zhang, J., Wu, S., & Pathan, M. S. (2021). Research on digital copyright protection based on the hyperledger fabric blockchain network technology. PeerJ Computer Science, 7, e709. doi:10.7717/peerj-cs.709.
[29] Debreczeni, M., Klenik, A., & Kocsis, I. (2024). Transaction Conflict Control in Hyperledger Fabric: A Taxonomy, Gaps, and Design for Conflict Prevention. IEEE Access, 12, 18987–19008. doi:10.1109/ACCESS.2024.3361318.
[30] Eldeeb, E., & Alves, H. (2024). LoRaWAN-Enabled Smart Campus: The Data Set and a People Counter Use Case. IEEE Internet of Things Journal, 11(5), 8569–8577. doi:10.1109/JIOT.2023.3320182.
[31] Jabbar, W. A., Subramaniam, T., Ong, A. E., Shu’Ib, M. I., Wu, W., & de Oliveira, M. A. (2022). LoRaWAN-Based IoT System Implementation for Long-Range Outdoor Air Quality Monitoring. Internet of Things (Netherlands), 19. doi:10.1016/j.iot.2022.100540.
[32] Priyasta, D., Hadiyanto, & Septiawan, R. (2023). Enabling EV Roaming Through Cascading WebSockets in OCPP 1.6. Journal Europeen Des Systemes Automatises, 56(3), 437–449. doi:10.18280/jesa.560311.
[33] Scutari, M. (2024). Entropy and the Kullback–Leibler Divergence for Bayesian Networks: Computational Complexity and Efficient Implementation. Algorithms, 17(1), 24. doi:10.3390/a17010024.
[34] Lakshmanan, M., & Anandha Mala, G. S. (2024). Merkle tree-blockchain-assisted privacy preservation of electronic medical records on offering medical data protection through hybrid heuristic algorithm. Knowledge and Information Systems, 66(1), 481–509. doi:10.1007/s10115-023-01937-z.
[35] Gangadharaiah, S., & Shrinivasacharya, P. (2024). Effective privacy preserving in cloud computing using position aware Merkle tree model. Bulletin of Electrical Engineering and Informatics, 13(2), 1424–1432. doi:10.11591/eei.v13i2.6636.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















