Machinery Usage and Productivity in Manufacturing: Firm-Level Matter in Developing Countries
Downloads
This study examines the determinants of machinery usage and its relationship with productivity outcomes among Vietnamese manufacturing firms, using nationally representative panel data from 2010 to 2019. A multinomial logit model and panel regressions with first- and second-differences reveal substantial heterogeneity in machinery choices, reflecting differences in firm size, ownership, and sectoral contexts. Medium and large enterprises tend to use computer-controlled machinery and are more likely to exhibit positive associations with labor productivity, although these effects often diminish over time. In contrast, micro and small firms remain reliant on handheld tools and show mixed or short-lived productivity gains. Foreign-invested enterprises demonstrate more consistent productivity benefits from advanced machinery than state-owned firms. These findings suggest that sustained productivity improvements require more than technological upgrades alone. The study highlights the potential importance of complementary investments – such as workforce development, managerial capacity, and institutional support – for fostering inclusive and effective machinery usage. These insights may inform targeted policy efforts aimed at narrowing technology gaps across heterogeneous firms in developing economies.
Downloads
[1] Cirera, X., Comin, D., & Cruz, M. (2022). Bridging the Technological Divide: Technology Adoption by Firms in Developing Countries. Bridging the Technological Divide: Technology Adoption by Firms in Developing Countries. World Bank Group, Washington, D.C., United States. doi:10.1596/978-1-4648-1826-4.
[2] Cook, S., & Rani, U. (2024). Platform Work in Developing Economies: Can Digitalisation Drive Structural Transformation? Indian Journal of Labour Economics, 63. doi:10.1007/s41027-024-00541-1.
[3] World Bank. (2008). Global economic prospects 2008: technology diffusion in the developing world (Vol. 1 of 2). The World Bank, Washington, United States.
[4] UNCTAD. (2015). Technology and innovation report 2015: Fostering innovation policies for industrial development. United Nations Conference on Trade and Development, 16 December, 2015, United Nations, New York, United States.
[5] Obradović, T., Vlačić, B., & Dabić, M. (2021). Open innovation in the manufacturing industry: A review and research agenda. Technovation, 102, 102221. doi:10.1016/j.technovation.2021.102221.
[6] Radicic, D., & Petković, S. (2023). Impact of digitalization on technological innovations in small and medium-sized enterprises (SMEs). Technological Forecasting and Social Change, 191, 122474. doi:10.1016/j.techfore.2023.122474.
[7] Barkley, E., & Jokonya, O. (2024). Factors Affecting SMEs Emerging Technologies Adoption in Developing Countries: A Literature Review. Procedia Computer Science, 239, 1966–1973. doi:10.1016/j.procs.2024.06.381.
[8] UNCTAD. (2022). Frontier technology adoption in developing countries: a measurement framework and proposed questionnaire. United Nations Conference on Trade and Development (UNCTAD), 25 October, 2025, United Nations, Geneva, Switzerland.
[9] Hall, B., & Khan, B. (2003). Adoption of New Technology. National Bureau of Economic Research, National Bureau of Economic Research, United States. doi:10.3386/w9730.
[10] Bruque, S., & Moyano, J. (2007). Organisational determinants of information technology adoption and implementation in SMEs: The case of family and cooperative firms. Technovation, 27(5), 241–253. doi:10.1016/j.technovation.2006.12.003.
[11] Cao, Y., Chen, S., & Tang, H. (2025). Robot adoption and firm export: Evidence from China. Technological Forecasting and Social Change, 210, 123878. doi:10.1016/j.techfore.2024.123878.
[12] Pérez, C. J., & Ponce, C. J. (2015). Disruption costs, learning by doing, and technology adoption. International Journal of Industrial Organization, 41, 64–75. doi:10.1016/j.ijindorg.2015.03.010.
[13] Huggett, M., & Ospina, S. (2001). Does productivity growth fall after the adoption of new technology? Journal of Monetary Economics, 48(1), 173–195. doi:10.1016/S0304-3932(01)00065-4.
[14] Grazzi, M., Jacoby, N., & Treibich, T. (2016). Dynamics of investment and firm performance: comparative evidence from manufacturing industries. Empirical Economics, 51(1), 125–179. doi:10.1007/s00181-015-0991-2.
[15] Zhu, K., & Kraemer, K. L. (2005). Post-adoption variations in usage and value of e-business by organizations: Cross-country evidence from the retail industry. Information Systems Research, 16(1), 61–84. doi:10.1287/isre.1050.0045.
[16] Aniceski, T. A., Miranda, L. T. P., Canciglieri Junior, O., & Benitez, G. B. (2024). The Four Smarts of Industry 4.0 and barriers for technology deployment: A TOE perspective. Computers and Industrial Engineering, 193, 110345. doi:10.1016/j.cie.2024.110345.
[17] Zhang, Z., Zhang, Y., Wu, H., Song, S., Pan, Y., & Feng, Y. (2024). Dual effects of automation on economy and environment: Evidence from A-share listed enterprises in China. China Economic Review, 88, 102308. doi:10.1016/j.chieco.2024.102308.
[18] Faiz, F., Le, V., & Masli, E. K. (2024). Determinants of digital technology adoption in innovative SMEs. Journal of Innovation and Knowledge, 9(4), 100610. doi:10.1016/j.jik.2024.100610.
[19] Ji, H., Lin, L., Wan, J., & Zang, J. (2024). Can digital technology adoption promote environmental innovation in small and medium-sized enterprises (SMEs)? Evidence from China. Science of the Total Environment, 955, 176887. doi:10.1016/j.scitotenv.2024.176887.
[20] Wang, D., & Shao, X. (2024). Research on the impact of digital transformation on the production efficiency of manufacturing enterprises: Institution-based analysis of the threshold effect. International Review of Economics and Finance, 91, 883–897. doi:10.1016/j.iref.2024.01.046.
[21] World Bank Group. (2022). Vietnam Country Climate and Development Report. World Bank Group, Washington, United States.
[22] World Bank Group. (2024). Viet Nam 2045: Trading up in a Changing World – Pathways to a High-Income Future (English). World Bank Group, Washington, United States.
[23] Vietcap. (2024). Vietnam Strategy 2025. Vietcap, Ho Chi Minh City, Vietnam.
[24] World Bank. (2021). Vietnam: Adapting to an Aging Society. World Bank Group, Washington, United States.
[25] Unido. (2019). Viet Nam Industry White Paper 2019 Manufacturing and Subsector Competitiveness. United Nations Industrial Development Organization, Vienna, Austria.
[26] Francois, M., Hansmann, T., Huang, B., & Nguyen, Z. (2023). Boosting Vietnam’s Manufacturing Sector: From Low Cost to High Productivity. McKinsey & Company, New York, United States. Available online: https://www.mckinsey.com/featured-insights/asia-pacific/boosting-vietnams-manufacturing-sector-from-low-cost-to-high-productivity (accessed on June 2025).
[27] Clemente-Almendros, J. A., Nicoara-Popescu, D., & Pastor-Sanz, I. (2024). Digital transformation in SMEs: Understanding its determinants and size heterogeneity. Technology in Society, 77, 102483. doi:10.1016/j.techsoc.2024.102483.
[28] Rahayu, R., & Day, J. (2015). Determinant Factors of E-commerce Adoption by SMEs in Developing Country: Evidence from Indonesia. Procedia - Social and Behavioral Sciences, 195, 142–150. doi:10.1016/j.sbspro.2015.06.423.
[29] Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time: A cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Quarterly: Management Information Systems, 23(2), 183–213. doi:10.2307/249751.
[30] Oliveira, T., & Martins, M. F. (2011). Literature review of information technology adoption models at firm level. Electronic journal of information systems evaluation, 14(1), pp110-121.
[31] Rogers, E.M. (1995) Diffusion of Innovations. 4th Edition, the Free Press, New York, United States.
[32] Al Teneiji, A. S., Abu Salim, T. Y., & Riaz, Z. (2024). Factors impacting the adoption of big data in healthcare: A systematic literature review. International Journal of Medical Informatics, 187, 105460. doi:10.1016/j.ijmedinf.2024.105460.
[33] Ogink, R. H. A. J., Goossen, M. C., Romme, A. G. L., & Akkermans, H. (2023). Mechanisms in open innovation: A review and synthesis of the literature. Technovation, 119, 102621. doi:10.1016/j.technovation.2022.102621.
[34] Cohen, W. M., & Levinthal, D. A. (1990). Absorptive Capacity: A New Perspective on Learning and Innovation. Administrative Science Quarterly, 35(1), 128. doi:10.2307/2393553.
[35] Blomström, M., & Kokko, A. (1998). Multinational corporations and spillovers. Journal of Economic Surveys, 12(3), 247–277. doi:10.1111/1467-6419.00056.
[36] Lane, P. J., Koka, B. R., & Pathak, S. (2006). The reification of absorptive capacity: A critical review and rejuvenation of the construct. Academy of Management Review, 31(4), 833–863. doi:10.5465/AMR.2006.22527456.
[37] Zahra, S. A., & George, G. (2002). Absorptive Capacity: A Review, Reconceptualization, and Extension. The Academy of Management Review, 27(2), 185. doi:10.2307/4134351.
[38] Schilling, M. A. (2002). Technology success and failure in winner-take-all markets: The impact of learning orientation, timing, and network externalities. Academy of Management Journal, 45(2), 387–398. doi:10.2307/3069353.
[39] Comin, D., & Hobijn, B. (2004). Cross-country technology adoption: Making the theories face the facts. Journal of Monetary Economics, 51(1), 39–83. doi:10.1016/j.jmoneco.2003.07.003.
[40] Stokey, N. L. (2021). Technology diffusion. Review of Economic Dynamics, 42, 15–36. doi:10.1016/j.red.2020.09.008.
[41] Hollenstein, H. (2004). Determinants of the adoption of Information and Communication Technologies (ICT). Structural Change and Economic Dynamics, 15(3), 315–342. doi:10.1016/j.strueco.2004.01.003.
[42] Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. doi:10.2307/249008.
[43] Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly: Management Information Systems, 36(1), 157–178. doi:10.2307/41410412.
[44] Chau, N. T., & Deng, H. (2018). Critical determinants for mobile commerce adoption in Vietnamese SMEs: A conceptual framework. Procedia Computer Science, 138, 433–440. doi:10.1016/j.procs.2018.10.061.
[45] Neri, A., Cagno, E., & Trianni, A. (2021). Barriers and drivers for the adoption of industrial sustainability measures in European SMEs: Empirical evidence from chemical and metalworking sectors. Sustainable Production and Consumption, 28, 1433–1464. doi:10.1016/j.spc.2021.08.018.
[46] Porter, M. (1990) The Competitive Advantage of Nations. Free Press, New York, United States.
[47] Syverson, C. (2011). What determines productivity. Journal of Economic Literature, 49(2), 326–365. doi:10.1257/jel.49.2.326.
[48] Affandi, Y., Ridhwan, M. M., Trinugroho, I., & Hermawan Adiwibowo, D. (2024). Digital adoption, business performance, and financial literacy in ultra-micro, micro, and small enterprises in Indonesia. Research in International Business and Finance, 70, 102376. doi:10.1016/j.ribaf.2024.102376.
[49] Pavitt, K. (1984). Sectoral patterns of technical change: Towards a taxonomy and a theory. Research Policy, 13(6), 343–373. doi:10.1016/0048-7333(84)90018-0.
[50] Tetteh, C. K. (2024). R&D, innovation and labour productivity: Evidence from the manufacturing sector in Ghana. Scientific African, 24, 2136. doi:10.1016/j.sciaf.2024.e02136.
[51] Arvanitis, S., & Hollenstein, H. (2001). The determinants of the adoption of advanced manufacturing technology: an empirical analysis based on firm-level data for Swiss manufacturing. Economics of Innovation and New Technology, 10(5), 377–414. doi:10.1080/10438590100000015.
[52] Solow, R. M. (1957). Technical Change and the Aggregate Production Function. The Review of Economics and Statistics, 39(3), 312. doi:10.2307/1926047.
[53] Jorgenson, D. W., & Griliches, Z. (1967). The explanation of productivity change. Review of Economic Studies, 34(3), 249–283. doi:10.2307/2296675.
[54] Marino-Romero, J. A., Palos-Sánchez, P. R., & Velicia-Martín, F. (2024). Evolution of digital transformation in SMEs management through a bibliometric analysis. Technological Forecasting and Social Change, 199, 123014. doi:10.1016/j.techfore.2023.123014.
[55] Damanpour, F. (1992). Organizational Size and Innovation. Organization Studies, 13(3), 375–402. doi:10.1177/017084069201300304.
[56] Lin, W. L., Yip, N., Ho, J. A., & Sambasivan, M. (2020). The adoption of technological innovations in a B2B context and its impact on firm performance: An ethical leadership perspective. Industrial Marketing Management, 89, 61–71. doi:10.1016/j.indmarman.2019.12.009.
[57] Shleifer, A., & Vishny, R. W. (1994). Politicians and firms. Quarterly Journal of Economics, 109(4), 995–1025. doi:10.2307/2118354.
[58] Meyer, K. E., & Sinani, E. (2009). When and where does foreign direct investment generate positive spillovers A meta-analysis. Journal of International Business Studies, 40(7), 1075–1094. doi:10.1057/jibs.2008.111.
[59] Tornatzky, L.G. and Fleischer, M. (1990). The Processes of Technological Innovation. Lexington Books, Lexington, United States.
[60] Autor, D. H., Levy, F., & Murnane, R. J. (2003). The skill content of recent technological change: An empirical exploration. Quarterly Journal of Economics, 118(4), 1279–1333. doi:10.1162/003355303322552801.
[61] Krugman, P. (1991). Increasing returns and economic geography. Journal of Political Economy, 99(3), 483–499. doi:10.1086/261763.
[62] Weinberg, B. A. (2004). Experience and Technology Adoption. SSRN Electronic Journal. doi:10.2139/ssrn.522302.
[63] Tetteh, E. N. A. (2024). Disciplinary-Based Knowledge Management Systems’ Potentialities of Collaborative-Integrative Linkages. Encyclopedia of Information Science and Technology, Sixth Edition, 1–43, IGI Global Scientific Publishing, Hershey, United States. doi:10.4018/978-1-6684-7366-5.ch071.
[64] Orlova, S., & Sun, L. (2024). Firm-level political risk and labor performance. International Review of Financial Analysis, 96, 103697. doi:10.1016/j.irfa.2024.103697.
[65] Levinsohn, J., & Petrin, A. (2003). Estimating production functions using inputs to control for un-observables. Review of Economic Studies, 70(2), 317–341. doi:10.1111/1467-937X.00246.
[66] Olley, G. S., & Pakes, A. (1996). The Dynamics of Productivity in the Telecommunications Equipment Industry. Econometrica, 64(6), 1263. doi:10.2307/2171831.
[67] Ackerberg, D. A., Caves, K., & Frazer, G. (2015). Identification Properties of Recent Production Function Estimators. Econometrica, 83(6), 2411–2451. doi:10.3982/ecta13408.
[68] Bartelsman, E. J., & Doms, M. (2000). Understanding productivity: Lessons from longitudinal microdata. Journal of Economic Literature, 38(3), 569–594. doi:10.1257/jel.38.3.569.
[69] Roberts, M. J., & Tybout, J. R. (1996). Industrial evolution in developing countries: Micro patterns of turnover, productivity, and market structure. Oxford University Press, Oxford, United Kingdom.
[70] Goedhuys, M., Janz, N., & Mohnen, P. (2008). What drives productivity in Tanzanian manufacturing firms: technology or business environment? The European Journal of Development Research, 20(2), 199–218. doi:10.1080/09578810802060785.
[71] Nakamura, T., & Ohashi, H. (2005). Technology Adoption, Learning by Doing, and Productivity: A Study of Steel Refining Furnaces. CIRJE-F-368. Available online: http://www.e.u-tokyo.ac.jp/cirje/research/03research02dp.html (accessed on June 2025).
[72] Bloom, N. (2009). The Impact of Uncertainty Shocks. Econometrica, 77(3), 623–685. doi:10.3982/ecta6248.
[73] Shkalenko, A. V., & Kozlova, S. A. (2024). A New Concept of Techno-Economic Institutions within Institutional Economics: Integrating Technologies and Institutional Frameworks. Emerging Science Journal, 8(5), 2047–2072. doi:10.28991/ESJ-2024-08-05-022.
[74] Collard-Wexler, A., & De Loecker, J. (2015). Reallocation and technology: Evidence from the US steel industry. American Economic Review, 105(1), 131–171. doi:10.1257/aer.20130090.
[75] Jovanovic, B., & Nyarko, Y. (1996). Learning by Doing and the Choice of Technology. Econometrica, 64(6), 1299. doi:10.2307/2171832.
[76] Van Biesebroeck, J. (2005). Exporting raises productivity in sub-Saharan African manufacturing firms. Journal of International Economics, 67(2), 373–391. doi:10.1016/j.jinteco.2004.12.002.
[77] UNCTAD. (2008). Investment Policy Review Viet Nam. United Nations Conference on Trade and Development (UNCTAD), 19-25 April, Accra, Ghana.
[78] VASS, MPI, & UNDP. (2019). Productivity and competitiveness of Viet Nam’s enterprises: Volume 1 – Manufacturing. United Nations Development Programme (UNDP), Ha Noi, Vietnam. Available online: https://www.undp.org/sites/g/files/zskgke326/files/migration/vn/PandC-Full-E.pdf (accessed on June 2025).
[79] Saurav, A., & Kuo, R. C. (2020). The Voice of Foreign Direct Investment: Foreign Investor Policy Preferences and Experiences inDeveloping Countries (No. 9425). The World Bank, Washington, United States. doi:10.1596/1813-9450-9425.
[80] Brynjolfsson, E., & Hitt, L. M. (2000). Beyond computation: Information technology, organizational transformation and business performance. Journal of Economic Perspectives, 14(4), 23–48. doi:10.1257/jep.14.4.23.
[81] Klenow, P. J. (1998). Learning Curves and the Cyclical Behavior of Manufacturing Industries. Review of Economic Dynamics, 1(2), 531–550. doi:10.1006/redy.1998.0014.
[82] Battistoni, E., Gitto, S., Murgia, G., & Campisi, D. (2023). Adoption paths of digital transformation in manufacturing SME. International Journal of Production Economics, 255, 108675. doi:10.1016/j.ijpe.2022.108675.
[83] Dao, T. B. T., Khuc, V. Q., Dong, M. C., & Cao, T. L. (2023). How Does Foreign Direct Investment Drive Employment Growth in Vietnam’s Formal Economy? Economies, 11(11), 266. doi:10.3390/economies11110266.
[84] Krugman, P. R. (2002). Geography and trade (Nachdr. In Gaston Eyskens lecture series). Leuven University Press, Leuven, Belgium.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
