Ultrasound-Assisted Extraction of Bioactive Compounds from Tanacetum vulgare L.: Antibacterial and Cytotoxic Evaluation
Downloads
This study investigates ultrasound-assisted extraction (UAE) of bioactive compounds from Tanacetum vulgare L. collected in Central Kazakhstan’s Akmola region, focusing on optimizing extraction parameters, analyzing chemical composition, and evaluating biological activity. The novelty lies in the first comprehensive analysis of T. vulgare populations under the region’s extreme continental climate, known to affect metabolite accumulation. Using 70% ethanol, UAE at 20 minutes provided the highest extraction efficiency, as evidenced by a substantial recovery of phenolic compounds. High-performance liquid chromatography (HPLC) identified key bioactive components – luteolin (6.9 µg/mL), quercetin (5.0 µg/mL), apigenin (1.45 µg/mL), cynaroside (2.7 µg/mL), rutin (1.28 µg/mL), chlorogenic acid (1.1–1.14 µg/mL), and ferulic acid (2.46–2.69 µg/mL) – with extraction time significantly influencing their yield. The antibacterial assessment revealed strong inhibition against Staphylococcus aureus, with a 30-minute flower extract producing an inhibition zone of 34±1.1 mm, surpassing benzylpenicillin (30±1.1 mm). By contrast, weak or no activity was observed against Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and Candida albicans. In cytotoxicity tests using Artemia salina, all extracts – regardless of concentration or duration – resulted in 100% lethality, suggesting potential toxic effects. These findings underscore the impact of Kazakhstan’s harsh ecological conditions on the phytochemical profile of T. vulgare and point to both the plant’s promising pharmacological applications and the need for caution in its use.
Downloads
[1] Chaachouay, N., & Zidane, L. (2024). Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs and Drug Candidates, 3(1), 184–207. doi:10.3390/ddc3010011.
[2] Riaz, M., Khalid, R., Afzal, M., Anjum, F., Fatima, H., Zia, S., Rasool, G., Egbuna, C., Mtewa, A. G., Uche, C. Z., & Aslam, M. A. (2023). Phytobioactive compounds as therapeutic agents for human diseases: A review. Food Science & Nutrition, 11(6), 2500–2529. doi:10.1002/fsn3.3308.
[3] Salem, O., Szwajkowska-Michałek, L., Przybylska-Balcerek, A., Szablewski, T., Cegielska-Radziejewska, R., Świerk, D., & Stuper-Szablewska, K. (2023). New Insights into Bioactive Compounds of Wild-Growing Medicinal Plants. Applied Sciences (Switzerland), 13(24), 13196. doi:10.3390/app132413196.
[4] Nurzyńska-Wierdak, R., Sałata, A., & Kniaziewicz, M. (2022). Tansy (Tanacetum vulgare L.)—A Wild-Growing Aromatic Medicinal Plant with a Variable Essential Oil Composition. Agronomy, 12(2), 277. doi:10.3390/agronomy12020277.
[5] Paderin, N. M., Saveliev, Y. N., & Popov, S. V. (2020). The effect of pectin of tansy, Tanacetum vulgare L., on anxiety and overeating food rich in fats and sugars in mice in modelling binge eating. Voprosy Pitaniia, 89(6), 14–22. doi:10.24411/0042-8833-2020-10074.
[6] Onozato, T., Nakamura, C. V., Garcia Cortez, D. A., Dias Filho, B. P., & Ueda-Nakamura, T. (2009). Tanacetum vulgare: Antiherpes virus activity of crude extract and the purified compound parthenolide. Phytotherapy Research, 23(6), 791–796. doi:10.1002/ptr.2638.
[7] Lahlou, S., Tangi, K. C., Lyoussi, B., & Morel, N. (2008). Vascular effects of Tanacetum vulgare L. leaf extract: In vitro pharmacological study. Journal of Ethnopharmacology, 120(1), 98–102. doi:10.1016/j.jep.2008.07.041.
[8] Räisänen, R., Primetta, A., Nikunen, S., Honkalampi, U., Nygren, H., Pihlava, J.-M., Vanden Berghe, I., & von Wright, A. (2020). Examining Safety of Biocolourants from Fungal and Plant Sources-Examples from Cortinarius and Tapinella, Salix and Tanacetum spp. and Dyed Woollen Fabrics. Antibiotics, 9(5), 266. doi:10.3390/antibiotics9050266.
[9] Konieczny, M., & Ślęzak, E. (2019). The Influence of an Environment on the Content of Macro- and Microelements in the Tanacetum vulgare. Journal of Ecological Engineering, 20(4), 1–7. doi:10.12911/22998993/99734.
[10] Devrnja, N., Krstić-Milošević, D., Janošević, D., Tešević, V., Vinterhalter, B., Savić, J., & Ćalić, D. (2020). In vitro cultivation of tansy (Tanacetum vulgare L.): a tool for the production of potent pharmaceutical agents. Protoplasma, 258(3), 587–599. doi:10.1007/s00709-020-01588-9.
[11] Liu, W., Yin, D., Li, N., Hou, X., Wang, D., Li, D., & Liu, J. (2016). Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticosa L. and its quality assessment. Scientific Reports, 6, 28591. doi:10.1038/srep28591.
[12] Shahhoseini, R. (2025). Metabolite distribution, relationships of phytochemical compositions and anticancer compound tracking in organs of Tanacetum parthenium L. as a sustainable pharmaceutical manufacturing plant. Environmental Technology & Innovation, 38, 104063. doi:10.1016/j.eti.2025.104063.
[13] Neller, E. (2023). Environmental impact on phytochemical profiles in plants. Mintage Journal of Pharmaceutical and Medical Sciences, 12(3), 1. doi:10.4303/2320-3315/236054.
[14] Pant, P., Pandey, S., & Dall’Acqua, S. (2021). The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chemistry & Biodiversity, 18(11), 2100345. doi:10.1002/cbdv.202100345.
[15] Alum, E. U. (2024). Climate change and its impact on the bioactive compound profile of medicinal plants: implications for global health. Plant Signaling & Behavior, 19(1), 2419683. doi:10.1080/15592324.2024.2419683.
[16] Ncube, B., Finnie, J. F., & Van Staden, J. (2012). Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. South African Journal of Botany, 82, 11–20. doi:10.1016/j.sajb.2012.05.009.
[17] Rahimova, H., Neuhaus‐Harr, A., Clancy, M. V., Guo, Y., Junker, R. R., Ojeda‐Prieto, L., ... & Schnitzler, J. P. (2024). Geographic distribution of terpenoid chemotypes in Tanacetum vulgare mediates tansy aphid occurrence but not abundance. Oikos, 2024(7), e10320. doi:10.1111/oik.10320.
[18] Ziaja, D., & Müller, C. (2025). Intraspecific and intra-individual chemodiversity and phenotypic integration of terpenes across plant parts and development stages in an aromatic plant. Plant Biology, 13763. doi:10.1111/plb.13763.
[19] Malacrinò, A., Jakobs, R., Xu, S., & Müller, C. (2025). Influences of plant maternal effects, chemotype, and environment on the leaf bacterial community. Plant Biology, 13759. doi:10.1111/plb.13759.
[20] Pozdnyakova, Y., Sailau, A., Solyanov, D., Aitisheva, L., Tatina, Y., & Britko, V. (2023). Diversity of early flowering plants of the Ulytau mountains (Central Kazakhstan). Biosystems Diversity, 31(3), 261–268. doi:10.15421/012329.
[21] Zagoskina, N. V., Zubova, M. Y., Nechaeva, T. L., Kazantseva, V. V., Goncharuk, E. A., Katanskaya, V. M., Baranova, E. N., & Aksenova, M. A. (2023). Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). International Journal of Molecular Sciences, 24(18), 13874. doi:10.3390/ijms241813874.
[22] Hurkul, M. M., Cetinkaya, A., Yayla, S., & Ozkan, S. A. (2024). Advanced sample preparation and chromatographic techniques for analyzing plant-based bioactive chemicals in nutraceuticals. Journal of Chromatography Open, 5, 100131. doi:10.1016/j.jcoa.2024.100131.
[23] López-Salazar, H., Camacho-Díaz, B. H., Ocampo, M. L. A., & Jiménez-Aparicio, A. R. (2023). Microwave-assisted extraction of functional compounds from plants: A Review. BioResources, 18(3), 6614. doi:10.15376/biores.18.3.lopez-salazar.
[24] Judžentienė, A., Būdienė, J., Stancelytė, D., & Nedveckytė, I. (2024). Phytochemistry and Allelopathic Effects of Tanacetum vulgare L. (Tansy) Extracts on Lepidium sativum L. (Garden Pepper Cress) and Lactuca sativa L. (Lettuce). Horticulturae, 10(6), 538. doi:10.3390/horticulturae10060538.
[25] Zahara, E., Darmawi, Balqis, U., & Soraya, C. (2024). The Potential of Ethanol Extract of Aleurites Moluccanus Leaves as TNF-α Inhibitor in Oral Incision Wound Care Model. Journal of Human, Earth, and Future, 5(4), 674–687. doi:10.28991/HEF-2024-05-04-010.
[26] Suhartati, T., Prihatin, A. S., Kurniati, A. N., Ropingi, H., Yandri, Y., & Hadi, S. (2024). Cycloartobiloxanthone, a Flavonoid with Antidiabetic, Antibacterial and Anticancer Activities from Artocarpus kemando Miq. Emerging Science Journal, 8(1), 43–60. doi:10.28991/ESJ-2024-08-01-04.
[27] Devrnja, N., Krstić-Milošević, D., Janošević, D., Tešević, V., Vinterhalter, B., Savić, J., & Ćalić, D. (2021). In vitro cultivation of tansy (Tanacetum vulgare L.): A tool for the production of potent pharmaceutical agents. Protoplasma, 258(3), 587-599. doi:10.1007/s00709-020-01588-9.
[28] Pozdnyakova, Y., Omarova, G., & Murzatayeva, A. (2022). Wild Plants of Central Kazakhstan with Antibiotic Properties and Effect. International Journal of Agriculture and Biology, 27(4), 259–269. doi:10.17957/IJAB/15.1924.
[29] Pozdnyakova, Y., Omarova, G., Murzatayeva, A., & Tankibaeva, N. (2022). Biodiversity of wild spice plants of the Central Kazakhstan region and their medicinal potential. Biodiversitas Journal of Biological Diversity, 23(9), 28. doi:10.13057/biodiv/d230928.
[30] NDDA. (2009). State Pharmacopoeia of the Republic of Kazakhstan. Volume II, Zhibek Zholy, Almaty, Kazakhstan. (In Russian).
[31] NDDA (2008). State Pharmacopoeia of the Republic of Kazakhstan. Volume I, Zhibek Zholy, Almaty, Kazakhstan. (In Russian).
[32] Zholdasayev, M. Y., Nartailuly, K. E., Atazhanova, G. A., & Losseva, I. V. (2023). Study of antioxidant and antiradical activity of dry extract of Phlomoides tuberosa (L.) Moench. in vitro. Medicine and Ecology, (2), 53-56.
[33] Bhadri, N., Bhatt, P., Barthwal, A., & Phulara, S. C. (2023). Synthesis and characterization of carboxymethyl cellulose from pine needles for biomedical and regenerative medicine applications. Medicine and Ecology, 3(3), 34–38. doi:10.59598/me-2305-6045-2023-108-3-34-38.
[34] Pereira, O. R., Peres, A. M., Silva, A. M. S., Domingues, M. R. M., & Cardoso, S. M. (2013). Simultaneous characterization and quantification of phenolic compounds in Thymus x citriodorus using a validated HPLC-UV and ESI-MS combined method. Food Research International, 54(2), 1773–1780. doi:10.1016/j.foodres.2013.09.016.
[35] State Pharmacopoeia of the Republic of Kazakhstan. (2025). Vol. I, OFS.1.2.4.0010.15. [Determination of antimicrobial activity of antibiotics by the agar diffusion method]. Ministry of Health of the Republic of Kazakhstan, Astana, Kazakhstan. (In Russian).
[36] State Pharmacopoeia of the Russian Federation. (2006). Method for determining the toxicity of highly mineralized surface and wastewater, soils, and waste by the survival of brine shrimp Artemia salina L. Pharmacopoeial article FR 1.39.2006.02505.
[37] Bacchetta, L., Visioli, F., Cappelli, G., Caruso, E., Martin, G., Nemeth, E., Bacchetta, G., Bedini, G., Wezel, A., van Asseldonk, T., van Raamsdonk, L., Mariani, F., & Eatwild Consortium. (2016). A manifesto for the valorization of wild edible plants. Journal of Ethnopharmacology, 191, 180–187. doi:10.1016/j.jep.2016.05.061.
[38] Li, Y., Kong, D., Fu, Y., Sussman, M. R., & Wu, H. (2020). The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry, 148, 80–89. doi:10.1016/j.plaphy.2020.01.006.
[39] Kavallieratos, N. G., Skourti, A., Nika, E. P., Mártonfi, P., Spinozzi, E., & Maggi, F. (2021). Tanacetum vulgare essential oil as grain protectant against adults and larvae of four major stored-product insect pests. Journal of Stored Products Research, 94, 101882. doi:10.1016/j.jspr.2021.101882.
[40] Nikolić, B., Matović, M., Todosijević, M., Stanković, J., Cvetković, M., Marin, P. D., & Tešević, V. (2018). Volatiles of Tanacetum macrophyllum Obtained by Different Extraction Methods. Natural Product Communications, 13(7), 27. doi:10.1177/1934578x1801300727.
[41] Palos-Hernández, A., González-Paramás, A. M., & Santos-Buelga, C. (2025). Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules, 30(1), 55. doi:10.3390/molecules30010055.
[42] Mot, C. A., Lupitu, A. I., Bungau, S., Iovan, C., Copolovici, D. M., Purza, L., Melinte (Frunzulica), C. E., & Copolovici, L. (2018). Composition and Antioxidant Activity of Aqueous Extracts Obtained from Herb of Tansy (Tanacetum Vulgare L.). Revista de Chimie, 69(5), 1041–1044. doi:10.37358/rc.18.5.6257.
[43] Herbina, N., Ruban, O., Andryushayev, O., & Hohlova, L. (2022). Intensification of the extraction process of flavonoids and hydroxycinnamic acids from Tanacetum vulgare L. flowers. Journal of Reports in Pharmaceutical Sciences, 11(1), 125–131. doi:10.4103/jrptps.JRPTPS_133_21.
[44] Demesa, A. G., Saavala, S., Pöysä, M., & Koiranen, T. (2024). Overview and Toxicity Assessment of Ultrasound-Assisted Extraction of Natural Ingredients from Plants. Foods, 13(19), 3066. doi:10.3390/foods13193066.
[45] Sowa, P., Marcinčáková, D., Miłek, M., Sidor, E., Legáth, J., & Dzugan, M. (2020). Analysis of cytotoxicity of selected asteraceae plant extracts in real time, their antioxidant properties and polyphenolic profile. Molecules, 25(23), 5517. doi:10.3390/molecules25235517.
[46] Mihaylova, D., Vrancheva, R., Desseva, I., Ivanov, I., Dincheva, I., Popova, M., & Popova, A. (2018). Analysis of the GC-MS of volatile compounds and the phytochemical profile and antioxidant activities of some Bulgarian medicinal plants. Zeitschrift Für Naturforschung C, 74(1–2), 45–54. doi:10.1515/znc-2018-0122.
[47] Šukele, R., Lauberte, L., Kovalcuka, L., Logviss, K., Bārzdiņa, A., Brangule, A., Horváth, Z. M., & Bandere, D. (2023). Chemical Profiling and Antioxidant Activity of Tanacetum vulgare L. Wild-Growing in Latvia. Plants, 12(10), 1968. doi:10.3390/plants12101968.
[48] Bączek, K. B., Kosakowska, O., Przybył, J. L., Pióro-Jabrucka, E., Costa, R., Mondello, L., Gniewosz, M., Synowiec, A., & Węglarz, Z. (2017). Antibacterial and antioxidant activity of essential oils and extracts from costmary ( Tanacetum balsamita L.) and tansy ( Tanacetum vulgare L.). Industrial Crops and Products, 102, 154–163. doi:10.1016/j.indcrop.2017.03.009.
[49] Roman, H., Niculescu, A. G., Lazăr, V., & Mitache, M. M. (2023). Antibacterial Efficiency of Tanacetum vulgare Essential Oil against ESKAPE Pathogens and Synergisms with Antibiotics. Antibiotics, 12(11), 1635. doi:10.3390/antibiotics12111635.
[50] Ivănescu, B., Pop, C. E., Vlase, L., Corciovă, A., Gherghel, D., Vochita, G., Tuchiluș, C., Mardari, C., & Teodor, C. M. (2021). Cytotoxic effect of chloroform extracts from tanacetum vulgare, t. Macrophyllum and t. corymbosum on hela, a375 and v79 cell lines. Farmacia, 69(1), 12–20. doi:10.31925/farmacia.2021.1.2.
[51] Ivănescu, B., Tuchiluș, C., Corciovă, A., Lungu, C., Mihai, C. T., Gheldiu, A. M., & Vlase, L. (2018). Antioxidant, antimicrobial and cytotoxic activity of Tanacetum vulgare, Tanacetum Corymbosum and Tanacetum macrophyllum extracts. Farmacia, 66(2), 282–288.
[52] Neuhaus-Harr, A., Ojeda-Prieto, L., Eilers, E., Müller, C., Weisser, W. W., & Heinen, R. (2024). Chemodiversity affects preference for Tanacetum vulgare chemotypes in two aphid species. Oikos, 2024(3), 10437. doi:10.1111/oik.10437.
[53] Cannavacciuolo, C., Pagliari, S., Celano, R., Campone, L., & Rastrelli, L. (2024). Critical analysis of green extraction techniques used for botanicals: Trends, priorities, and optimization strategies-A review. TrAC - Trends in Analytical Chemistry, 173, 117627. doi:10.1016/j.trac.2024.117627.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
