New Approaches to the General Relativistic Poynting-Robertson Effect

Vittorio De Falco

Abstract


Objectives: A systematic study on the general relativistic Poynting-Robertson effect has been developed so far by introducing different complementary approaches, which can be mainly divided in two kinds: (1) improving the theoretical assessments and model in its simple aspects, and (2) extracting mathematical and physical information from such system with the aim to extend methods or results to other similar physical systems of analogue structure. Methods/Analysis: We use these theoretical approaches: relativity of observer splitting formalism; Lagrangian formalism and Rayleigh potential with a new integration method; Lyapunov theory os stability. Findings: We determined the three-dimensional formulation of the general relativistic Poynting-Robertson effect model. We determine the analytical form of the Rayleigh potential and discuss its implications. We prove that the critical hypersurfaces (regions where there is a balance between gravitational and radiation forces) are stable configurations. Novelty/Improvement: Our new contributions are: to have introduced the three-dimensional description; to have determined the general relativistic Rayleigh potential for the first time in the General Relativity literature; to have provided an alternative, general and more elegant proof of the stability of the critical hypersurfaces.

Keywords


Poynting-Robertson Effect; Radiation Processes in High-energy Astrophysics; Theoretical Physics.

References


B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and et al. “Observation of Gravitational Waves from a Binary Black Hole Merger.” Centennial of General Relativity (February 5, 2017): 291–311. doi:10.1142/9789814699662_0011.

Abbott, B. P., R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, et al. “GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.” Physical Review Letters 116, no. 24 (June 15, 2016). doi:10.1103/physrevlett.116.241103.

Abbott, B. P., R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, et al. “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral.” Physical Review Letters 119, no. 16 (October 16, 2017). doi:10.1103/physrevlett.119.161101.

Abraham, Ralph, Jerrold E. Marsden, and Jerrold E. Marsden. Foundations of mechanics. Vol. 36. Reading, Massachusetts: Benjamin/Cummings Publishing Company, (1978).

Bakala, Pavel, Vittorio De Falco, Emmanuele Battista, Kateřina Goluchová, Debora Lančová, Maurizio Falanga, and Luigi Stella. “Three-Dimensional General Relativistic Poynting-Robertson Effect. II. Radiation Field from a Rigidly Rotating Spherical Source.” Physical Review D 100, no. 10 (November 26, 2019). doi:10.1103/physrevd.100.104053.

Bini, Donato, Paolo Carini, and Robert T. Jantzen. “The Intrinsic Derivative and Centrifugal Forces in General Relativity: I.” International Journal of Modern Physics D 06, no. 01 (February 1997): 1–38. doi:10.1142/s0218271897000029.

Bini, Donato, Paolo Carini, and Robert T. Jantzen. “The Intrinsic Derivative and Centrifugal Forces in General Relativity: II. Applications to Circular Orbits in Some Familiar Stationary Axisymmetric Spacetimes.” International Journal of Modern Physics D 06, no. 02 (April 1997): 143–198. doi:10.1142/s021827189700011x.

Bini, Donato, Andrea Geralico, Robert T Jantzen, Oldřich Semerák, and Luigi Stella. “The General Relativistic Poynting–Robertson Effect: II. A Photon Flux with Nonzero Angular Momentum.” Classical and Quantum Gravity 28, no. 3 (January 12, 2011): 035008. doi:10.1088/0264-9381/28/3/035008.

Bini, Donato, Robert T Jantzen, and Luigi Stella. “The General Relativistic Poynting–Robertson Effect.” Classical and Quantum Gravity 26, no. 5 (February 17, 2009): 055009. doi:10.1088/0264-9381/26/5/055009.

Burns, Joseph A., Philippe L. Lamy, and Steven Soter. “Radiation Forces on Small Particles in the Solar System.” Icarus 40, no. 1 (October 1979): 1–48. doi:10.1016/0019-1035(79)90050-2.

De Falco, Vittorio, Pavel Bakala, Emmanuele Battista, Debora Lančová, Maurizio Falanga, and Luigi Stella. “Three-Dimensional General Relativistic Poynting-Robertson Effect: Radial Radiation Field.” Physical Review D 99, no. 2 (January 24, 2019). doi:10.1103/physrevd.99.023014.

De Falco, Vittorio, Emmanuele Battista, and Maurizio Falanga. “Lagrangian Formulation of the General Relativistic Poynting-Robertson Effect.” Physical Review D 97, no. 8 (April 26, 2018). doi:10.1103/physrevd.97.084048.

De Falco, Vittorio, and Emmanuele Battista. “Poynting-Robertson Effect as a Dissipative System in General Relativity.” Physical Review D 101, no. 6 (March 19, 2020). doi:10.1103/physrevd.101.064040.

De Falco, Vittorio, and Emmanuele Battista. “Analytical Rayleigh Potential for the General Relativistic Poynting-Robertson Effect.” EPL (Europhysics Letters) 127, no. 3 (September 11, 2019): 30006. doi:10.1209/0295-5075/127/30006.

Do, Thoan, and Geoff Prince. “New Progress in the Inverse Problem in the Calculus of Variations.” Differential Geometry and Its Applications 45 (April 2016): 148–179. doi:10.1016/j.difgeo.2016.01.005.

Event Horizon Telescope Collaboration, Kazunori Akiyama, Antxon Alberdi, Walter Alef, Keiichi Asada, Rebecca Azulay, Anne-Kathrin Baczko, David Ball, Mislav Baloković, and John Barrett. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. , 875(1):L1, Apr 2019.

Event Horizon Telescope Collaboration, Kazunori Akiyama, Antxon Alberdi, Walter Alef, Keiichi Asada, Rebecca Azulay, Anne-Kathrin Baczko, David Ball, Mislav Baloković, and John Barrett. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. , 875(1):L2, Apr 2019.

Event Horizon Telescope Collaboration, Kazunori Akiyama, Antxon Alberdi, Walter Alef, Keiichi Asada, Rebecca Azulay, Anne-Kathrin Baczko, David Ball, Mislav Baloković, and John Barrett. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. , 875(1):L3, Apr 2019.

Event Horizon Telescope Collaboration, Kazunori Akiyama, Antxon Alberdi, Walter Alef, Keiichi Asada, Rebecca Azulay, Anne-Kathrin Baczko, David Ball, Mislav Baloković, and John Barrett. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole., 875(1):L4, Apr 2019.

Event Horizon Telescope Collaboration, Kazunori Akiyama, Antxon Alberdi, Walter Alef, Keiichi Asada, Rebecca Azulay, Anne-Kathrin Baczko, David Ball, Mislav Baloković, and John Barrett. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. , 875(1):L5, Apr 2019.

Event Horizon Telescope Collaboration, Kazunori Akiyama, Antxon Alberdi, Walter Alef, Keiichi Asada, Rebecca Azulay, Anne-Kathrin Baczko, David Ball, Mislav Baloković, and John Barrett. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. , 875(1):L6, Apr 2019.

De Falco, Vittorio, and Pavel Bakala. “Stable Attractors in the Three-Dimensional General Relativistic Poynting-Robertson Effect.” Physical Review D 101, no. 2 (January 7, 2020). doi:10.1103/physrevd.101.024025.

Jantzen, Robert T., Paolo Carini, and Donato Bini. "Gravitoelectromagnetism: Relativity of Splitting Formalisms." J. Korean Phys. Soc 25 (1992).

Libermann, Paulette, and Charles-Michel Marle. “Semi-Basic and Vertical Differential Forms in Mechanics.” Symplectic Geometry and Analytical Mechanics (1987): 53–88. doi:10.1007/978-94-009-3807-6_2.

Martínez, E., J.F. Cariñena, and W. Sarlet. “Derivations of Differential Forms Along the Tangent Bundle Projection II.” Differential Geometry and Its Applications 3, no. 1 (March 1993): 1–29. doi:10.1016/0926-2245(93)90020-2.

Martínez, E., J.F. Cariñena, and W. Sarlet. “Derivations of Differential Forms Along the Tangent Bundle Projection.” Differential Geometry and Its Applications 2, no. 1 (March 1992): 17–43. doi:10.1016/0926-2245(92)90007-a.

Mestdag, T., W. Sarlet, and M. Crampin. “Second-Order Dynamical Systems of Lagrangian Type with Dissipation.” Differential Geometry and Its Applications 29 (August 2011): S156–S163. doi:10.1016/j.difgeo.2011.04.021.

Misner, Charles W., Kip S. Thorne, and John Archibald Wheeler. Gravitation. Macmillan, (1973).

Morandi, G. “The Inverse Problem in the Calculus of Variations and the Geometry of the Tangent Bundle.” Physics Reports 188, no. 3–4 (April 1990): 147–284. doi:10.1016/0370-1573(90)90137-q.

Poynting, J. H. “‘Radiation in the Solar System; Its Effect on Temperature and Its Pressure on Small Bodies.’” Monthly Notices of the Royal Astronomical Society 64, no. 1 (November 13, 1903): 1a–5a. doi:10.1093/mnras/64.1.1a.

Robertson, H. P., and H. N. Russell. “Dynamical Effects of Radiation in the Solar System.” Monthly Notices of the Royal Astronomical Society 97, no. 6 (April 1, 1937): 423–437. doi:10.1093/mnras/97.6.423.

S.S.M.W.H. Robert L. Devaney, M.W. Hirsch, S. Smale, and R.L. Devaney. Differential Equations, Dynamical Systems, and an Introduction to Chaos. Pure and Applied Mathematics - Academic Press. Elsevier Science, (2004).

Santilli, Ruggero Maria. “Foundations of Theoretical Mechanics I: the inverse problem in Newtonian mechanics.” Foundations of Theoretical Mechanics. Springer-Verlag (1978). doi:10.1007/978-3-662-25771-5.

Wielgus, Maciek. “Optically Thin Outbursts of Rotating Neutron Stars Cannot Be Spherical.” Monthly Notices of the Royal Astronomical Society 488, no. 4 (July 30, 2019): 4937–4941. doi:10.1093/mnras/stz2079.


Full Text: PDF

DOI: 10.28991/esj-2020-01225

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Vittorio De Falco