A Non-local Model of the Propagation of Action Potentials in Myelinated Neurons

Corina Stefania Drapaca, Sahin Ozdemir, Elizabeth Proctor


Myelinated neurons are characterized by the presence of myelin, a multilaminated wrapping around the axons formed by specialized neuroglial cells. Myelin acts as an electrical insulator and therefore, in myelinated neurons, the action potentials do not propagate within the axons but happen only at the nodes of Ranvier which are gaps in the axonal myelination. Recent advancements in brain science have shown that the shapes, timings, and propagation speeds of these so-called saltatory action potentials are controlled by various biochemical interactions among neurons, glial cells and the extracellular space. Given the complexity of brain’s structure and processes, the work hypothesis made in this paper is that non-local effects are involved in the optimal propagation of action potentials. A non- local model of the action potentials propagation in myelinated neurons is proposed that involves spatial derivatives of fractional order. The effects of non- locality on the distribution of the membrane potential are investigated using numerical simulations.


Non-locality; Fractional Calculus; Action Potentials; Hodgkin-Huxley Model.


Kwapień, Jarosław, and Stanisław Drożdż. “Physical Approach to Complex Systems.” Physics Reports 515, no. 3–4 (June 2012): 115–226. doi:10.1016/j.physrep.2012.01.007.

Ellis, George F. R. “Physics, Complexity and Causality.” Nature 435, no. 7043 (June 2005): 743–743. doi:10.1038/435743a.

Tuckwell, H.C. “Introduction to Theoretical Neurobiology: Nonlinear and Stochastic Theories” vol. 2. London, UK: Cambridge University Press (1988).

Dinariev, O. Yu. “Equivalence Between Classical Statistical Mechanics and Nonlocal Hydrodynamics for a Certain Class of External Forces.” Russian Physics Journal 41, no. 3 (March 1998): 211–216. doi:10.1007/bf02766413.

Dinariev, O. Yu. “Dynamic Theory of Thermal Fluctuations with Allowance for the Spatiotemporal Nonlocality.” Russian Physics Journal 43, no. 4 (April 2000): 279–282. doi:10.1007/bf02508359.

Eisenberg, Bob. “Crowded Charges in Ion Channels.” Advances in Chemical Physics (November 29, 2011): 77–223. doi:10.1002/9781118158715.ch2.

Liu, Jinn-Liang, Dexuan Xie, and Bob Eisenberg. “Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions.” Computational and Mathematical Biophysics 5, no. 1 (October 26, 2017): 116–124. doi:10.1515/mlbmb-2017-0007.

Berthoumieux, H., and F. Paillusson. “Dielectric Response in the Vicinity of an Ion: A Nonlocal and Nonlinear Model of the Dielectric Properties of Water.” The Journal of Chemical Physics 150, no. 9 (March 7, 2019): 094507. doi:10.1063/1.5080183.

Bakker, H. J. “Structural Dynamics of Aqueous Salt Solutions.” Chemical Reviews 108, no. 4 (April 2008): 1456–1473. doi:10.1021/cr0206622.

Ai, Bao-quan, Zhi-gang Shao, and Wei-rong Zhong. “Rectified Brownian Transport in Corrugated Channels: Fractional Brownian Motion and Lévy Flights.” The Journal of Chemical Physics 137, no. 17 (November 7, 2012): 174101. doi:10.1063/1.4764472.

Nicholson, Charles, Padideh Kamali-Zare, and Lian Tao. “Brain Extracellular Space as a Diffusion Barrier.” Computing and Visualization in Science 14, no. 7 (October 2011): 309–325. doi:10.1007/s00791-012-0185-9.

Nicholson, Charles, and Sabina Hrabětová. “Brain Extracellular Space: The Final Frontier of Neuroscience.” Biophysical Journal 113, no. 10 (November 2017): 2133–2142. doi:10.1016/j.bpj.2017.06.052.

Morawski, Markus, Tilo Reinert, Wolfram Meyer-Klaucke, Friedrich E. Wagner, Wolfgang Tröger, Anja Reinert, Carsten Jäger, Gert Brückner, and Thomas Arendt. “Ion Exchanger in the Brain: Quantitative Analysis of Perineuronally Fixed Anionic Binding Sites Suggests Diffusion Barriers with Ion Sorting Properties.” Scientific Reports 5, no. 1 (December 2015). doi:10.1038/srep16471.

Min, Rogier, and Marjo S. van der Knaap. “Genetic Defects Disrupting Glial Ion and Water Homeostasis in the Brain.” Brain Pathology 28, no. 3 (May 2018): 372–387. doi:10.1111/bpa.12602.

Simard, M., and M. Nedergaard. “The Neurobiology of Glia in the Context of Water and Ion Homeostasis.” Neuroscience 129, no. 4 (January 2004): 877–896. doi:10.1016/j.neuroscience.2004.09.053.

Baumann, Nicole, and Danielle Pham-Dinh. “Biology of Oligodendrocyte and Myelin in the Mammalian Central Nervous System.” Physiological Reviews 81, no. 2 (April 1, 2001): 871–927. doi:10.1152/physrev.2001.81.2.871.

Bradl, Monika, and Hans Lassmann. “Oligodendrocytes: Biology and Pathology.” Acta Neuropathologica 119, no. 1 (October 22, 2009): 37–53. doi:10.1007/s00401-009-0601-5.

Brazhe, A. R., G. V. Maksimov, E. Mosekilde, and O. V. Sosnovtseva. “Excitation Block in a Nerve Fibre Model Owing to Potassium-Dependent Changes in Myelin Resistance.” Interface Focus 1, no. 1 (December 2010): 86–100. doi:10.1098/rsfs.2010.0001.

Freeman, Sean A., Anne Desmazières, Desdemona Fricker, Catherine Lubetzki, and Nathalie Sol-Foulon. “Mechanisms of Sodium Channel Clustering and Its Influence on Axonal Impulse Conduction.” Cellular and Molecular Life Sciences 73, no. 4 (October 29, 2015): 723–735. doi:10.1007/s00018-015-2081-1.

Weigel, A. V., B. Simon, M. M. Tamkun, and D. Krapf. “Ergodic and Nonergodic Processes Coexist in the Plasma Membrane as Observed by Single-Molecule Tracking.” Proceedings of the National Academy of Sciences 108, no. 16 (April 4, 2011): 6438–6443. doi:10.1073/pnas.1016325108.

West, B.J. “Fractional Calculus View of Complexity Tomorrow’s Science” Boca Raton, FL: CRC Press (2016).

West, B.J. “Nature’s Patterns and the Fractional Calculus” Series Fractional Calculus in Applied Sciences and Engineering 2. Berlin, Germany: De Gruyter (2017).

Metzler, Ralf, and Joseph Klafter. “The Restaurant at the End of the Random Walk: Recent Developments in the Description of Anomalous Transport by Fractional Dynamics.” Journal of Physics A: Mathematical and General 37, no. 31 (July 22, 2004): R161–R208. doi:10.1088/0305-4470/37/31/r01.

Stuart, Greg, Nelson Spruston, Bert Sakmann, and Michael Häusser. “Action Potential Initiation and Backpropagation in Neurons of the Mammalian CNS.” Trends in Neurosciences 20, no. 3 (March 1997): 125–131. doi:10.1016/s0166-2236(96)10075-8.

Kjellander, Roland. “Focus Article: Oscillatory and Long-Range Monotonic Exponential Decays of Electrostatic Interactions in Ionic Liquids and Other Electrolytes: The Significance of Dielectric Permittivity and Renormalized Charges.” The Journal of Chemical Physics 148, no. 19 (May 21, 2018): 193701. doi:10.1063/1.5010024.

Bochud, Thierry, and Damien Challet. “Optimal Approximations of Power Laws with Exponentials: Application to Volatility Models with Long Memory.” Quantitative Finance 7, no. 6 (December 2007): 585–589. doi:10.1080/14697680701278291.

Dayan, P, and L.F. Abbott. “Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems” Cambridge, MA: MIT Press (2001).

Henry, B. I., T. A. M. Langlands, and S. L. Wearne. “Fractional Cable Models for Spiny Neuronal Dendrites.” Physical Review Letters 100, no. 12 (March 28, 2008). doi:10.1103/physrevlett.100.128103.

Langlands, T. A. M., B. I. Henry, and S. L. Wearne. “Fractional Cable Equation Models for Anomalous Electrodiffusion in Nerve Cells: Infinite Domain Solutions.” Journal of Mathematical Biology 59, no. 6 (February 17, 2009): 761–808. doi:10.1007/s00285-009-0251-1.

Sambandham, Bhuvaneswari, and Aghalaya Vatsala. “Basic Results for Sequential Caputo Fractional Differential Equations.” Mathematics 3, no. 1 (March 19, 2015): 76–91. doi:10.3390/math3010076.

Samko, S., A.A. Kilbas, and O.I. Marichev. “Fractional Integrals and Derivatives: Theory and Applications” London, UK: Gordon and Breach Science Publishers (2000).

Gorenflo, R., and F. Mainardi. “Fractional Calculus.” Fractals and Fractional Calculus in Continuum Mechanics (1997): 223–276. doi:10.1007/978-3-7091-2664-6_5.

Odibat, Zaid M., and Nabil T. Shawagfeh. “Generalized Taylor’s Formula.” Applied Mathematics and Computation 186, no. 1 (March 2007): 286–293. doi:10.1016/j.amc.2006.07.102.

El-Ajou, Ahmad, Omar Arqub, Zeyad Zhour, and Shaher Momani. “New Results on Fractional Power Series: Theories and Applications.” Entropy 15, no. 12 (December 2, 2013): 5305–5323. doi:10.3390/e15125305.

Tarasov, Vasily E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer Science & Business Media, (2011).

Nilsson, I., and C. H. Berthold. "Axon classes and internodal growth in the ventral spinal root L7 of adult and developing cats." Journal of anatomy 156 (1988): 71-96.

Brill, M H, S G Waxman, J W Moore, and R W Joyner. “Conduction Velocity and Spike Configuration in Myelinated Fibres: Computed Dependence on Internode Distance.” Journal of Neurology, Neurosurgery & Psychiatry 40, no. 8 (August 1, 1977): 769–774. doi:10.1136/jnnp.40.8.769.

Ford, Marc C., Olga Alexandrova, Lee Cossell, Annette Stange-Marten, James Sinclair, Conny Kopp-Scheinpflug, Michael Pecka, David Attwell, and Benedikt Grothe. “Tuning of Ranvier Node and Internode Properties in Myelinated Axons to Adjust Action Potential Timing.” Nature Communications 6, no. 1 (August 25, 2015). doi:10.1038/ncomms9073.

Costa, Ana Rita, Rita Pinto-Costa, Sara Castro Sousa, and Mónica Mendes Sousa. “The Regulation of Axon Diameter: From Axonal Circumferential Contractility to Activity-Dependent Axon Swelling.” Frontiers in Molecular Neuroscience 11 (September 4, 2018). doi:10.3389/fnmol.2018.00319.

Wei, Y., G. Ullah, and S. J. Schiff. “Unification of Neuronal Spikes, Seizures, and Spreading Depression.” Journal of Neuroscience 34, no. 35 (August 27, 2014): 11733–11743. doi:10.1523/jneurosci.0516-14.2014.

Goldman, L., and James S. Albus. “Computation of Impulse Conduction in Myelinated Fibers; Theoretical Basis of the Velocity-Diameter Relation.” Biophysical Journal 8, no. 5 (May 1968): 596–607. doi:10.1016/s0006-3495(68)86510-5.

Shneider, M N, and M Pekker. “Correlation of Action Potentials in Adjacent Neurons.” Physical Biology 12, no. 6 (November 24, 2015): 066009. doi:10.1088/1478-3975/12/6/066009.

Frankenhaeuser, B., and A. F. Huxley. “The Action Potential in the Myelinated Nerve Fibre ofXenopus Laevisas Computed on the Basis of Voltage Clamp Data.” The Journal of Physiology 171, no. 2 (June 1, 1964): 302–315. doi:10.1113/jphysiol.1964.sp007378.

Baeumer, Boris, Mihály Kovács, Mark M. Meerschaert, and Harish Sankaranarayanan. “Boundary Conditions for Fractional Diffusion.” Journal of Computational and Applied Mathematics 336 (July 2018): 408–424. doi:10.1016/j.cam.2017.12.053.

Shampine, Lawrence F., and Mark W. Reichelt. “The MATLAB ODE Suite.” SIAM Journal on Scientific Computing 18, no. 1 (January 1997): 1–22. doi:10.1137/s1064827594276424.

Debanne, Dominique, Emilie Campanac, Andrzej Bialowas, Edmond Carlier, and Gisèle Alcaraz. “Axon Physiology.” Physiological Reviews 91, no. 2 (April 2011): 555–602. doi:10.1152/physrev.00048.2009.

Full Text: PDF

DOI: 10.28991/esj-2020-01219


  • There are currently no refbacks.

Copyright (c) 2020 Corina Stefania Drapaca, Sahin Ozdemir, Elizabeth Proctor