Agarose-Based Antibacterial Films from Gracilaria sp.: Isolation, Characterization, and Metal Nanoparticle Incorporation
Downloads
The incorporated metal nanoparticles in a polysaccharide-based film exhibit efficient antibacterial activity against harmful germs. However, previous studies have used a commercial polysaccharide for their film production. Therefore, this study aimed to develop a natural polysaccharide-based film extracted from the local algae Gracilaria sp. originating from Sinjai Regency, South Sulawesi, Indonesia. Firstly, the polysaccharide agarose was isolated and its properties compared with those of commercial agarose. A present low-cost isolation process produces agarose with 1.8% (w/w) of yield. Results also showed physicochemical properties similar to those of the commercial agarose. Secondly, the agarose-based antibacterial film was synthesized at 0, 0.5, and 1% glycerol concentrations. The synthesized film was incorporated with silver (Ag) and copper (Cu) nanoparticles (NPs). Morphological, mechanical, and physicochemical properties of the incorporated Ag-agarose and Cu-agarose films were characterized using Field Emission Scanning Electron Microscope (FESEM), Universal Testing Machine (UTM), and Fourier Transform Infrared Spectroscopy (FTIR), respectively. Results showed the film stiffness and tensile strength increased by incorporating either AgNPs or CuNPS. The interaction of AgNPs-agarose most likely involves physical bonds, while the interaction of CuNPs-agarose forms coordination bonds. An antibacterial test showed that the Ag-agarose nanocomposite inhibited the growth of Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis. In the meantime, Cu-agarose prevented the growth of Staphylococcus aureus. Overall, antibacterial activity was influenced by the interaction between metal nanoparticles and agarose, the concentration of metal nanoparticles, and the film's solubility. An agarose-based antibacterial film from Gracilaria sp. has the potential for use in various applications, including food packaging, pharmaceuticals, and other industries.
Downloads
[1] Mahmud, N., Islam, J., & Tahergorabi, R. (2021). Marine biopolymers: Applications in food packaging. Processes, 9(12), 1–34. doi:10.3390/pr9122245.
[2] Krishnan, L., Ravi, N., Kumar Mondal, A., Akter, F., Kumar, M., Ralph, P., & Kuzhiumparambil, U. (2024). Seaweed-based polysaccharides - review of extraction, characterization, and bioplastic application. Green Chemistry, 26(10), 5790–5823. doi:10.1039/d3gc04009g.
[3] Fu, L., Xiao, Q., Ru, Y., Hong, Q., Weng, H., Zhang, Y., Chen, J., & Xiao, A. (2024). Bio-based active packaging: Gallic acid modified agarose coatings in grass carp (Ctenopharyngodon idellus) preservation. International Journal of Biological Macromolecules, 255, 128196. doi:10.1016/j.ijbiomac.2023.128196.
[4] Zarrintaj, P., Manouchehri, S., Ahmadi, Z., Saeb, M. R., Urbanska, A. M., Kaplan, D. L., & Mozafari, M. (2018). Agarose-based biomaterials for tissue engineering. Carbohydrate Polymers, 187, 66–84. doi:10.1016/j.carbpol.2018.01.060.
[5] Atef, M., Rezaei, M., & Behrooz, R. (2015). Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil. Food Hydrocolloids, 45, 150–157. doi:10.1016/j.foodhyd.2014.09.037.
[6] Kajla, P., Chaudhary, V., Dewan, A., Bangar, S. P., Ramniwas, S., Rustagi, S., & Pandiselvam, R. (2024). Seaweed-based biopolymers for food packaging: A sustainable approach for a cleaner tomorrow. International Journal of Biological Macromolecules, 274, 133166. doi:10.1016/j.ijbiomac.2024.133166.
[7] Khodashenas, B. (2016). The Influential Factors on Antibacterial Behaviour of Copper and Silver Nanoparticles. Indian Chemical Engineer, 58(3), 224–239. doi:10.1080/00194506.2015.1026950.
[8] Zia, R., Riaz, M., Farooq, N., Qamar, A., & Anjum, S. (2018). Antibacterial activity of Ag and Cu nanoparticles synthesized by chemical reduction method: A comparative analysis. Materials Research Express, 5(7), 1–7. doi:10.1088/2053-1591/aacf70.
[9] Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver nanoparticles and their antibacterial applications. International Journal of Molecular Sciences, 22(13), 1–21. doi:10.3390/ijms22137202.
[10] Onofre-Cordeiro, N. A., Silva, Y. E. O., Solidônio, E. G., de Sena, K. X. F. R., Silva, W. E., Santos, B. S., Aquino, K. A. S., Lima, C. S. A., & Yara, R. (2018). Agarose-silver particles films: Effect of calcium ascorbate in nanoparticles synthesis and film properties. International Journal of Biological Macromolecules, 119, 701–707. doi:10.1016/j.ijbiomac.2018.07.115.
[11] Gholinejad, M., & Jeddi, N. (2014). Copper nanoparticles supported on agarose as a bioorganic and degradable polymer for multicomponent click synthesis of 1,2,3-triazoles under low copper loading in water. ACS Sustainable Chemistry & Engineering, 2(12), 2658–2665. doi:10.1021/sc500395b.
[12] Zhang, Y., Fu, X., Duan, D., Xu, J., & Gao, X. (2019). Preparation and characterization of agar, agarose, and agaropectin from the red alga Ahnfeltia plicata. Journal of Oceanology and Limnology, 37(3), 815–824. doi:10.1007/s00343-019-8129-6.
[13] Pramasari, D. A., Sondari, D., Rachmawati, S. A., Ningrum, R. S., & Sufiandi, S. (2021). The effect of alkaline-autoclaving delignification on chemical component changes of sugarcane trash. IOP Conference Series: Earth and Environmental Science, 759(1), 1–8. doi:10.1088/1755-1315/759/1/012010.
[14] Zucca, P., Fernandez-Lafuente, R., & Sanjust, E. (2016). Agarose and its derivatives as supports for enzyme immobilization. Molecules, 21(11). doi:10.3390/molecules21111577.
[15] Aslinda, W., & Ahmad, A. (2016). Isolation and Characterization of Agarose from Red Macroalgae Euchema Cottoni for DNA Fragment Separation. Natural Science: Journal of Science and Technology, 5(3), 307-313. doi:10.22487/25411969.2016.v5.i3.7214.
[16] Gilcreas, F. W. (1966). Standard methods for the examination of water and waste water. American Journal of Public Health and the Nations Health, 56(3), 387-388.
[17] Gu, Y., Cheong, K. L., & Du, H. (2017). Modification and comparison of three Gracilaria spp. agarose with methylation for promotion of its gelling properties. Chemistry Central Journal, 11(1), 2–10. doi:10.1186/s13065-017-0334-9.
[18] Rice, E. W., Baird, R. B., & Eaton, A. D. (2017). Standard Methods for the Examination of Water and Wastewater (23rd Ed.). American Public Health Association (APHA), Washington, United States.
[19] Njoki, P. N. (2019). Transformation of Silver Nanoparticles in Phosphate Anions: An Experiment for High School Students. Journal of Chemical Education, 96(3), 546–552. doi:10.1021/acs.jchemed.8b00602.
[20] Iwuji, C., Saha, H., Ghann, W., Dotson, D., Bhuiya, M. A. K., Parvez, M. S., Jahangir, Z. S., Rahman, M. M., Chowdhury, F. I., & Uddin, J. (2024). Synthesis and characterization of silver nanoparticles and their promising antimicrobial effects. Chemical Physics Impact, 9, 100758. doi:10.1016/j.chphi.2024.100758.
[21] Asmat-Campos, D., Delfin-Narciso, D., Juárez-Cortijo, L., & Nazario-Naveda, R. (2021). Influence of the volume of ascorbic acid in the synthesis of copper nanoparticles mediated by chemical pathway and its stability over time. IOP Conference Series: Earth and Environmental Science, 897(1), 1–8. doi:10.1088/1755-1315/897/1/012010.
[22] Tantra, R., Schulze, P., & Quincey, P. (2010). Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology, 8(3), 279–285. doi:10.1016/j.partic.2010.01.003.
[23] Ediyilyam, S., George, B., Shankar, S. S., Dennis, T. T., Wacławek, S., Černík, M., & Padil, V. V. T. (2021). Chitosan / Gelatin / Silver Nanoparticles Composites Films for Biodegradable Food Packaging Applications. Polymers, 13(11), 1680. doi:10.3390/polym13111680.
[24] ASTM E2015-04(2021). (2025). Guide for Preparation of Plastics and Polymeric Specimens for Microstructural Examination. ASTM International, Pennsylvania, United States. doi:10.1520/E2015-04R21.
[25] ASTM D882-18. (2018). Standard Test Method for Tensile Properties of Thin Plastic Sheeting, ASTM International, Pennsylvania, United States. doi:10.1520/D0882-18.
[26] Suryanegara, L., Fatriasari, W., Zulfiana, D., Anita, S. H., Masruchin, N., Gutari, S., & Kemala, T. (2021). Novel antimicrobial bioplastic based on PLA-chitosan by addition of TiO2 and ZnO. Journal of Environmental Health Science and Engineering, 19(1), 415–425. doi:10.1007/s40201-021-00614-z.
[27] SNI 2690: 2015. (2015). Dried seaweed. Badan Standarisasi Nasional (BSN), Jakarta, Indonesia. (In Indonesian).
[28] Freile-Pelegrín, Y., & Murano, E. (2005). Agars from three species of Gracilaria (Rhodophyta) from Yucatán Peninsula. Bioresource Technology, 96(3), 295–302. doi:10.1016/j.biortech.2004.04.010.
[29] Meena, R., Siddhanta, A. K., Prasad, K., Ramavat, B. K., Eswaran, K., Thiruppathi, S., Ganesan, M., Mantri, V. A., & Rao, P. V. S. (2007). Preparation, characterization and benchmarking of agarose from Gracilaria dura of Indian waters. Carbohydrate Polymers, 69(1), 179–188. doi:10.1016/j.carbpol.2006.09.020.
[30] Lee, W.-K., Lim, Y.-Y., Leow, A. T.-C., Namasivayam, P., Abdullah, J. O., & Ho, C.-L. (2016). Factors affecting yield and gelling properties of agar. Journal of Applied Phycology, 29(3), 1527–1540. doi:10.1007/s10811-016-1009-y.
[31] Vuai, S. A. H., & Mpatani, F. (2019). Optimization of agar extraction from local seaweed species, Gracilaria salicornia in Tanzania. Phycological Research, 67(4), 261–266. doi:10.1111/pre.12380.
[32] Ghannadi, A., Shabani, L., & Yegdaneh, A. (2016). Cytotoxic, antioxidant and phytochemical analysis of Gracilaria species from Persian Gulf. Advanced Biomedical Research, 5(1), 1–5. doi:10.4103/2277-9175.187373.
[33] Mollet, J. C., Rahaoui, A., & Lemoine, Y. (1998). Yield, chemical composition and gel strength of agarocolloids of Gracilaria gracilis, Gracilariopsis longissima and the newly reported Gracilaria cf. vermiculophylla from Roscoff (Brittany, France). Journal of Applied Phycology, 10(1), 59–66. doi:10.1023/A:1008051528443.
[34] Sharma, M., Prakash Chaudhary, J., Mondal, D., Meena, R., & Prasad, K. (2015). A green and sustainable approach to utilize bio-ionic liquids for the selective precipitation of high purity agarose from an agarophyte extract. Green Chemistry, 17(5), 2867–2873. doi:10.1039/c4gc02498b.
[35] Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53(101174), 1–11. doi:10.1016/j.jddst.2019.101174.
[36] Ejaz, U., Afzal, M., Mazhar, M., Riaz, M., Ahmed, N., Rizg, W. Y., Alahmadi, A. A., Badr, M. Y., Mushtaq, R. Y., & Yean, C. Y. (2024). Characterization, Synthesis, and Biological Activities of Silver Nanoparticles Produced via Green Synthesis Method Using Thymus Vulgaris Aqueous Extract. International Journal of Nanomedicine, 19, 453–469. doi:10.2147/IJN.S446017.
[37] Zakir, M., Maming, M., Lembang, M. S., & Lembang, E. Y. (2021). Reduction mechanisms of Ag(I) and Au(III) in the synthesis of silver and gold nanoparticles using leaf extract of Terminalia catappa. Jurnal Natural, 21(2), 89-98. doi:10.24815/jn.v21i2.20677.
[38] Patil, R. B., & Chougale, A. D. (2021). Analytical methods for the identification and characterization of silver nanoparticles: A brief review. Materials Today: Proceedings, 47, 5520–5532. doi:10.1016/j.matpr.2021.03.384.
[39] Khatoon, U. T., Nageswara Rao, G. V. S., & Mohan, M. K. (2013). Synthesis and characterization of copper nanoparticles by chemical reduction method. International Conference on Advanced Nanomaterials & Emerging Engineering Technologies, 11–14. doi:10.1109/icanmeet.2013.6609221.
[40] Tessema, B., Gonfa, G., Hailegiorgis, S. M., Prabhu, S. V., & Manivannan, S. (2023). Synthesis and characterization of silver nanoparticles using reducing agents of bitter leaf (Vernonia amygdalina) extract and tri-sodium citrate. Nano-Structures & Nano-Objects, 35, 100983. doi:10.1016/j.nanoso.2023.100983.
[41] Sadia, B. O., Cherutoi, J. K., & Achisa, C. M. (2021). Optimization, Characterization, and Antibacterial Activity of Copper Nanoparticles Synthesized Using Senna didymobotrya Root Extract. Journal of Nanotechnology, 2021(1), 5611434. doi:10.1155/2021/5611434.
[42] Antonio-Pérez, A., Durán-Armenta, L. F., Pérez-Loredo, M. G., & Torres-Huerta, A. L. (2023). Biosynthesis of Copper Nanoparticles with Medicinal Plants Extracts: From Extraction Methods to Applications. Micromachines, 14(10), 1882. doi:10.3390/mi14101882.
[43] Mohd Amin, A. M., Mohd Sauid, S., Musa, M., & Ku Hamid, K. H. (2017). The Effect of Glycerol Content on Mechanical Properties, Surface Morphology and Water Absorption of Thermoplastic Films From Tacca Leontopetaloides Starch. Jurnal Teknologi, 79(5–3), 11327. doi:10.11113/jt.v79.11327.
[44] Tarique, J., Sapuan, S. M., & Khalina, A. (2021). Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Scientific Reports, 11(1), 13900. doi:10.1038/s41598-021-93094-y.
[45] Medina, I., Scholl, S., & Rädle, M. (2022). Film Thickness and Glycerol Concentration Mapping of Falling Films Based on Fluorescence and Near-Infrared Technique. Micromachines, 13(12), 2184. doi:10.3390/mi13122184.
[46] JIS Z 1707:2019. (2019). General Rules of Plastic Films for Food Packaging. Japanese Standards Association, Tokyo, Japan.
[47] ASTM D6988-08. (2013). Standard Guide for Determination of Thickness of Plastic Film Test Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/D6988-08.
[48] Lian, H., Shi, J., Zhang, X., & Peng, Y. (2020). Effect of the added polysaccharide on the release of thyme essential oil and structure properties of chitosan based film. Food Packaging and Shelf Life, 23, 100467. doi:10.1016/j.fpsl.2020.100467.
[49] Perdones, Á., Chiralt, A., & Vargas, M. (2016). Properties of film-forming dispersions and films based on chitosan containing basil or thyme essential oil. Food Hydrocolloids, 57, 271–279. doi:10.1016/j.foodhyd.2016.02.006.
[50] Fadhila G.S, A. A., Darwis, W., Wibowo, R. H., Sipriyadi, S., & Supriati, R. (2021). Antibacterial Activity of the Ethanolic Extract of Sembung Rambat (Mikania micrantha Kunth) Leaves Against Bacillus subtilis. Natural Science: Journal of Science and Technology, 10(1), 6–11. doi:10.22487/25411969.2021.v10.i1.15476.
[51] Suyatma, N. E., Tighzert, L., Copinet, A., & Coma, V. (2005). Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. Journal of Agricultural and Food Chemistry, 53(10), 3950–3957. doi:10.1021/jf048790+.
[52] Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161–166. doi:10.1016/j.foodchem.2010.02.033.
[53] Bang, Y. J., Roy, S., & Rhim, J. W. (2022). A Facile In Situ Synthesis of Resorcinol-Mediated Silver Nanoparticles and the Fabrication of Agar-Based Functional Nanocomposite Films. Journal of Composites Science, 6(5), 1–14. doi:10.3390/jcs6050124.
[54] Saravanan, B., & Manivannan, V. (2018). Synthesis of copper nanoparticles using trisodium citrate and evaluation of antibacterial activity. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 4(5), 841–849. doi:10.26479/2018.0405.60.
[55] Rhim, J. W., Wang, L. F., & Hong, S. I. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids, 33(2), 327–335. doi:10.1016/j.foodhyd.2013.04.002.
[56] Elango, M., Deepa, M., Subramanian, R., & Mohamed Musthafa, A. (2018). Synthesis, Characterization, and Antibacterial Activity of Polyindole/Ag–Cuo Nanocomposites by Reflux Condensation Method. Polymer - Plastics Technology and Engineering, 57(14), 1440–1451. doi:10.1080/03602559.2017.1410832.
[57] Shankar, S., Teng, X., & Rhim, J. W. (2014). Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents. Carbohydrate Polymers, 114, 484–492. doi:10.1016/j.carbpol.2014.08.036.
[58] Girma, A., Alamnie, G., Bekele, T., Mebratie, G., Mekuye, B., Abera, B., Workineh, D., Tabor, A., & Jufar, D. (2024). Green-synthesised silver nanoparticles: antibacterial activity and alternative mechanisms of action to combat multidrug-resistant bacterial pathogens: a systematic literature review. Green Chemistry Letters and Reviews, 17(1), 2412601. doi:10.1080/17518253.2024.2412601.
[59] Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I. R. de, Rojo, T., Serpooshan, V., Parak, W. J., & Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511. doi:10.1016/j.tibtech.2012.06.004.
[60] Soldatović, T. (2021). Correlation between HSAB Principle and Substitution Reactions in Bioinorganic Reactions. Photophysics, Photochemical and Substitution Reactions - Recent Advances. IntechOpen Limited, London, United Kingdom. doi:10.5772/intechopen.91682.
[61] Rhim, J. W., Gennadios, A., Handa, A., Weller, C. L., & Hanna, M. A. (2000). Solubility, tensile, and color properties of modified soy protein isolate films. Journal of Agricultural and Food Chemistry, 48(10), 4937–4941. doi:10.1021/jf0005418.
[62] Kanmani, P., & Rhim, J. W. (2014). Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract. Carbohydrate Polymers, 102(1), 708–716. doi:10.1016/j.carbpol.2013.10.099.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















