The Occupational Indemnity Insurance Modelling: Brighton Mahohoho XGBoost Probabilistic Automated Actuarial Reserving-Pricing-Underwriting
Downloads
This paper introduces the IFRS 17-Compliant Brighton Mahohoho Probabilistic Framework for Inflation-Adjusted Frequency-Severity Modeling in Occupational Indemnity Insurance, integrating AI-driven actuarial methodologies for loss reserving, risk pricing, and underwriting. Objectives: The framework ensures IFRS 17 compliance while enhancing actuarial accuracy and operational efficiency. Methods/Analysis: A simulation-based dataset of policy, claims, premiums, inflation adjustments, and underwriting data is generated. Claim frequencies and severities are modeled using Poisson and Gamma distributions, with inflation adjustments incorporated into reserves. XGBoost is applied for Automated Actuarial Loss Reserving (ALR) and Automated Actuarial Risk Pricing (ARP), while a weighted average approach estimates Automated Actuarial Loss Reserve Risk Premiums (AALRRP). Findings: Model accuracy is validated through MAE, MSE, RMSE, residual analysis, and scatter plots. IFRS 17 metrics—Contractual Service Margin (CSM), Fulfillment Cash Flows (FCF), Risk Adjustments, and Liabilities—are simulated, with sensitivity analysis ensuring robustness. Policyholders are segmented into underwriting clusters, incorporating expenses, outgo, and revenue to derive the Automated Net Actuarial Underwriting Balance (ANAUB). Novelty/Improvement: This integrated AI-driven actuarial framework significantly advances IFRS 17-compliant pricing and reserving, offering enhanced predictive accuracy, regulatory alignment, and improved risk assessment in occupational indemnity insurance.
Downloads
[1] McCabe, G. M., & Witt, R. C. (1980). Insurance pricing and regulation under uncertainty: A chance-constrained approach. Journal of Risk and Insurance, 607-635. doi:10.2307/252287.
[2] Denuit, M., Hainaut, D., & Trufin, J. (2019). Effective Statistical Learning Methods for Actuaries I: GLMs and Extensions. Springer Nature, Switzerland. doi:10.1007/978-3-030-25820-7.
[3] Wüthrich, M. V., & Merz, M. (2013). Financial Modeling, Actuarial Valuation and Solvency in Insurance. Springer Finance, Berlin, Germany. doi:10.1007/978-3-642-31392-9.
[4] Embrechts, P., & Wüthrich, M. V. (2022). Recent challenges in actuarial science. Annual Review of Statistics and Its Application, 9, 119-140. doi:10.1146/annurev-statistics-040120-030244.
[5] Ruppert, D. (2004). The Elements of Statistical Learning: Data Mining, Inference, and Prediction." Journal of the American Statistical Association, 99(466), 567. doi:10.1198/jasa.2004.s339.
[6] Taylor, G. (2012). Loss Reserving: An Actuarial Perspective. Springer Science & Business Media, New York, United States. doi:10.1007/978-1-4615-4583-5.
[7] Gneiting, T., & Katzfuss, M. (2014). Probabilistic Forecasting. Annual Review of Statistics and Its Application, 1(1), 125–151. doi:10.1146/annurev-statistics-062713-085831.
[8] IFRS Foundation. (2021). IFRS 17 Insurance Contracts. IFRS Foundation, London, United Kingdom. Available online: https://www.ifrs.org (accessed on September 2025).
[9] Taylor, G. (2019). Loss reserving models: Granular and machine learning forms. Risks, 7(3), 82. doi:10.3390/risks7030082.
[10] Nallamala, S. K., Kasaraneni, B. P., Thuniki, P., Pattyam, S. P., Dunka, V., Kondapaka, K. K., ... & Putha, S. (2022). AI-Based Actuarial Science Models for Insurance: Utilizing Machine Learning for Risk Classification, Loss Prediction, and Reserve Calculation. American Journal of Data Science and Artificial Intelligence Innovations, 2, 363-403.
[11] Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016, 785–794. doi:10.1145/2939672.2939785.
[12] Mack, T. (1994). Measuring the variability of chain ladder reserve estimates. Insurance: Mathematics and Economics, 15(1), 81. doi:10.1016/0167-6687(94)90721-8.
[13] Yang, L., Frees, E. W., & Zhang, Z. (2020). Nonparametric Estimation of Copula Regression Models with Discrete Outcomes. Journal of the American Statistical Association, 115(530), 707–720. doi:10.1080/01621459.2018.1546586.
[14] Haberman, S. (1996). Landmarks in the history of actuarial science (up to 1919). Actuarial Research Paper No. 84, Faculty of Actuarial Science & Insurance, City University London, London, United Kingdom.
[15] Espinosa, O., & Zarruk, A. (2021). The importance of actuarial management in insurance business decision-making in the twenty-first century. British Actuarial Journal, 26(1), 14. doi:10.1017/S1357321721000155.
[16] Balbás, A., Balbás, B., Balbás, R., & Heras, A. (2023). Actuarial pricing with financial methods. Scandinavian Actuarial Journal, 2023(5), 450–476. doi:10.1080/03461238.2022.2111529.
[17] Hürlimann, W. (2005). On a robust parameter-free pricing principle: Fair value and risk adjusted premium. 17th International AFIR Colloquium, 1-12.
[18] Wüthrich, M. V., & Merz, M. (2008). Stochastic claims reserving methods in insurance. John Wiley & Sons, Hoboken, United States.
[19] Denuit, M., Genest, C., & Marceau, É. (1999). Stochastic bounds on sums of dependent risks. Insurance: Mathematics and Economics, 25(1), 85-104. doi:10.1016/S0167-6687(99)00027-X.
[20] Wang, Z., Chen, X., Wu, Y., Jiang, L., Lin, S., & Qiu, G. (2025). A robust and interpretable ensemble machine-learning model for predicting healthcare insurance fraud. Scientific Reports, 15(1), 218. doi:10.1038/s41598-024-82062-x.
[21] Mahohoho, B., Chimedza, C., Matarise, F., & Munyira, S. (2025). The Advanced Actuarial Data Science Based AI-Driven Solutions for Automated Loss Reserving Under IFRS 17 in Non-Life Insurance. Science, Engineering and Technology, 5(2). doi:10.54327/set2025/v5.i2.210.
[22] Yryku, E., & Lamani, D. (2023). IFRS 17’s Impact on Pricing and Profitability: A Comparative Analysis in Life Insurance. International Academic Journal, 4(2), 25-35.
[23] Palmborg, L. (2021). Modern developments in insurance: IFRS 17 and LSTM forecasting (Doctoral dissertation, Department of Mathematics). Stockholm University, Stockholm, United States.
[24] Xiong, L., Manathunga, V., Luo, J., Dennison, N., Zhang, R., & Xiang, Z. (2023). AutoReserve: A Web-Based Tool for Personal Auto Insurance Loss Reserving with Classical and Machine Learning Methods. Risks, 11(7), 131. doi:10.3390/risks11070131.
[25] Krasheninnikova, E., García, J., Maestre, R., & Fernández, F. (2019). Reinforcement learning for pricing strategy optimization in the insurance industry. Engineering Applications of Artificial Intelligence, 80, 8-19. doi:10.1016/j.engappai.2019.01.010.
[26] Mahohoho, B. (2024). The Innovative Development of the IFRS17 Formulated Brighton Mahohoho Inflation-Adjusted Automated Actuarial Loss Reserving Model: Harnessing Advanced Random Forest Techniques for Enhanced Data Analytics in Fire Insurance. Global Journal of Human-Social Science, 24(13), 51–107. doi:10.34257/ljrsvol24is13pg51.
[27] Mahohoho, B. (2024). The IFRS17 Regulated Travel Insurance Intelligent Non-Linear Regression Based Inflation Adjusted Frequency-Severity Automated Loss Reserve Risk Pricing and Underwriting Model with Applications of the Actuarial Specific Gaussian Process Regression (GPR) Model. Global Journal of Human-Social Science, 24(14), 39–92. doi:10.34257/ljrsvol24is14pg39.
[28] Clemente, C., Guerreiro, G. R., & Bravo, J. M. (2023). Modelling Motor Insurance Claim Frequency and Severity Using Gradient Boosting. Risks, 11(9), 163. doi:10.3390/risks11090163.
[29] Mahohoho, B., Chimedza, C., Matarise, F., & Munyira, S. (2024). Artificial Intelligence-Based Automated Actuarial Pricing and Underwriting Model for the General Insurance Sector. Open Journal of Statistics, 14(03), 294–340. doi:10.4236/ojs.2024.143014.
[30] Cohen, L., Manion, L., & Morrison, K. (2002). Research Methods in Education. Routledge, London, United Kingdom. doi:10.4324/9780203224342.
[31] Creswell, J. W. (2014). Research Design: Qualitative, Quantitative and Mixed Methods Approaches (4th Ed.). Sage Publications, Thousand Oaks, United States.
[32] Denzin, N. K., & Lincoln, Y. S. (2018). The SAGE Handbook of Qualitative Research (5th Ed.). SAGE, Los Angeles, United States.
[33] Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley, Reading, United Kingdom.
[34] Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York, United States. doi:10.1007/978-3-319-24277-4_9.
[35] Wilkinson, L. (2012). The Grammar of Graphics. Handbook of Computational Statistics. Springer Handbooks of Computational Statistics, Springer, Berlin, Germany. doi:10.1007/978-3-642-21551-3_13.
[36] Zeileis, A., Kleiber, C., & Jackman, S. (2008). Regression Models for Count Data in R. Journal of Statistical Software, 27(8). doi:10.18637/jss.v027.i08.
[37] Field, A. (2013). Discovering Statistics with IBM SPSS Newbury Par8. SAGE, Thousand Oaks, United States.
[38] McCullagh, P. (2019). Generalized linear models. Routledge, New York, United States. doi:0.1201/9780203753736.
[39] Frees, E. W., Derrig, R. A., & Meyers, G. (2014). Predictive Modeling in Actuarial Science. Predictive Modeling Applications in Actuarial Science, 1–10. doi:10.1017/cbo9781139342674.001.
[40] Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(Nov), 2579-2605.
[41] Hinton, G. E., & Roweis, S. (2002). Stochastic neighbor embedding. Advances in Neural Information Processing Systems 15 (NIPS 2002), 9-14 December, 2002, Vancouver, Canada.
[42] Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster Analysis. Wiley-Blackwell, Hoboken, United States. doi:10.1002/9780470977811.
[43] Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A density-based algorithm for discovering clusters in large spatial databases with noise. The Second International Conference on Knowledge Discovery and Data Mining (KDD-96), 2-4 August, 1996, Portland, United States.
[44] Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall, Inc, Saddle River, United States.
[45] Kaufman, L., & Rousseeuw, P. J. (1990). Finding Groups in Data. Wiley Series in Probability and Statistics, John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470316801.
[46] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer Series in Statistics. Springer New York, United States. doi:10.1007/978-0-387-84858-7.
[47] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R. Springer, New York, United States. doi:10.1007/978-1-4614-7138-7.
[48] Bisias, D., Flood, M., Lo, A. W., & Valavanis, S. (2012). A survey of systemic risk analytics. Annual Review of Financial Economics, 4, 255–296. doi:10.1146/annurev-financial-110311-101754.
[49] Pritchard, A., Antle, M., & Smith, A. (2019). Exploring the Impact of IFRS 17 on Risk Pricing in Insurance Models. Journal of Actuarial Science, 5(1), 34–50.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















