Optimization of nSiO2-Filled RTV Silicone Rubber Coatings for Enhanced High Voltage Outdoor Insulator Performance
Downloads
This paper presents the experimental results of leakage current testing on nanosilica (nSiO₂)-filled room-temperature vulcanized (RTV) silicone rubber (SiR) coatings for outdoor insulators. Nanosilica composition is prepared based on the optimization results of surface hydrophobicity, surface resistivity, and relative permittivity of the RTV SiR matrix with varying nSiO2 contents. The study found that the insulator with a 4 wt.% nSiO₂-filled RTV SiR coating had the highest surface resistivity, better hydrophobicity, and higher permittivity compared to the unfilled RTV SiR coating. Leakage current tests are performed under several conditions (dry, clean fog, and salt fog) to evaluate the insulation characteristics of the modified RTV SiR coating applied on an actual high-voltage insulator. The results indicate that the 4 wt.% nSiO2-filled RTV SiR-coated insulator significantly reduces the leakage current magnitude and Total Harmonic Distortion (THD) when compared to that of the uncoated as well as to that of unfilled RTV SiR-coated insulators. Under all fog conditions, the 4 wt.% nSiO2-filled RTV SiR-coated insulator with a polluted surface showed the smallest leakage current THD percentage of all insulator samples. Additionally, the cross product of the leakage current magnitude and THD is also calculated to determine the condition of the insulator. The cross-product results show that the 4 wt.% nSiO₂-filled RTV SiR-coated insulator is more effective at reducing it under dry conditions, with a reduction range of 68%–81% compared to the uncoated isolator and 70%–77% compared to the unfilled RTV SiR-coated isolator. This study shows the effectiveness of RTV silicone rubber coating material with nSiO2 filler particles in reducing the magnitude of leakage current and harmonics in polluted environments.
Downloads
[1] Bashir, N., & Ahmad, H. (2008). Ageing of transmission line insulators: The past, present and future. 2008 IEEE 2nd International Power and Energy Conference, 30–34. doi:10.1109/pecon.2008.4762440.
[2] Jingyan Li, Caixin Sun, Wenxia Sima, Qing Yang, & Jianlin Hu. (2010). Contamination Level Prediction of Insulators Based on the Characteristics of Leakage Current. IEEE Transactions on Power Delivery, 25(1), 417–424. doi:10.1109/tpwrd.2009.2035426.
[3] Kordkheili, H., Abravesh, H., Tabasi, M., Dakhem, M., & Abravesh, M. (2010). Determining the probability of flashover occurrence in composite insulators by using leakage current harmonic components. IEEE Transactions on Dielectrics and Electrical Insulation, 17(2), 502–512. doi:10.1109/tdei.2010.5448106.
[4] Waters, R. T., Haddad, A., Griffiths, H., Harid, N., Charalampidis, P., & Sarkar, P. (2011). Dry-band discharges on polluted silicone rubber insulation: Control and characterization. IEEE Transactions on Dielectrics and Electrical Insulation, 18(6), 1995–2003. doi:10.1109/TDEI.2011.6118637.
[5] Shit, S. C., & Shah, P. (2013). A review on silicone rubber. National Academy Science Letters, 36(4), 355–365. doi:10.1007/s40009-013-0150-2.
[6] Shin-Etsu. (2025). Characteristic properties of Silicone Rubber Compounds. Shin-Etsu, Tokyo, Japan. Available online: https://www.shinetsusilicone-global.com/catalog/pdf/rubber_e.pdf (accessed on July 2025).
[7] Cherney, E. A. (1995). RTV Silicone—A High Tech Solution for a Dirty Insulator Problem. IEEE Electrical Insulation Magazine, 11(6), 8–14. doi:10.1109/57.475903.
[8] Song, Y. S., & Youn, J. R. (2005). Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon, 43(7), 1378–1385. doi:10.1016/j.carbon.2005.01.007.
[9] Shrivastava, A. (2018). Additives for Plastics. Introduction to Plastics Engineering, William Andrew, Norwich, United States. doi:10.1016/b978-0-323-39500-7.00004-6.
[10] Momen, G., & Farzaneh, M. (2011). Survey of micro/nano filler use to improve silicone rubber for outdoor insulators. Reviews on Advanced Materials Science, 27(1), 1–13.
[11] Tariq Nazir, M., & Phung, B. T. (2016). Ultraviolet weathering resistance performance of micro/nano silica filled silicone rubber composites for outdoor insulation. 2016 International Conference on Condition Monitoring and Diagnosis (CMD), 1035–1038. doi:10.1109/cmd.2016.7758005.
[12] Ilhan, S., & Cherney, E. A. (2018). Comparative tests on RTV silicone rubber coated porcelain suspension insulators in a salt-fog chamber. IEEE Transactions on Dielectrics and Electrical Insulation, 25(3), 947–953. doi:10.1109/TDEI.2018.006968.
[13] Tariq Nazir, M., Phung, B. T., & Hoffman, M. (2015). Effect of AC corona discharge on hydrophobic properties of silicone rubber nanocomposites. 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), 412–415. doi:10.1109/icpadm.2015.7295296.
[14] Zolriasatein, A., RajabiMashhadi, Z., Ardebili, D. H., Noori, N. R., Abadchi, M. R., & Mirzaee, M. (2023). UV accelerated aging of RTV/SiO2 nanocomposites: Study on surface microstructure, hydrophobicity, and electrical properties. International Journal of Adhesion and Adhesives, 126, 1. doi:10.1016/j.ijadhadh.2023.103465.
[15] Rachmawati, Sartika, N., Putra, N. R. M., & Suwarno. (2018). The study on leakage current characteristics and electrical properties of uncoated ceramic, RTV silicon rubber coated ceramic, and semiconducting glazed outdoor insulators. International Journal on Electrical Engineering and Informatics, 10(2), 318–337. doi:10.15676/ijeei.2018.10.2.9.
[16] Bagaskara, A., Rachmawati, & Suwarno. (2024). Environmental Effects on Parameters of Leakage Current Equivalent Circuits of Outdoor Insulators. Emerging Science Journal, 8(1), 310–325. doi:10.28991/ESJ-2024-08-01-022.
[17] Diantari, R. A., Rachmawati, Khayam, U., & Suwarno. (2025). Gum Rosin Characteristics as Alternative Coating Material to Improve High Voltage Outdoor Insulator Performance. Emerging Science Journal, 9(3), 1477–1492. doi:10.28991/ESJ-2025-09-03-018.
[18] Rachmawati, Alifianda, A. R., Nalendra, A. D., Permatasari, F. A., & Suwarno. (2024). Effects of nSiO2-filled RTV Silicone Rubber Coating on Leakage Current Characteristics of Outdoor Insulators. 2024 10th International Conference on Condition Monitoring and Diagnosis, CMD 2024, 378–381. doi:10.23919/CMD62064.2024.10766238.
[19] IEC TS 62073. (2016). Guidance on the Measurement of Hydrophobicity of Insulator Surfaces. International Electrotechnical Commission (IEC), Geneva, Switzerland.
[20] JIS K 6271-1. (2015). Rubber, vulcanized or thermoplastic - Determination of resistivity - Part 1: Guarded-electrode system. Japanese Standards Association, Tokyo, Japan.
[21] IEC TS 60815-1. (2008). Selection and Dimensioning of High-Voltage Insulators Intended for use in polluted Conditions. International Electrotechnical Commission (IEC), Geneva, Switzerland.
[22] IEC 60507:1991. Artificial Pollutions test on high voltage ceramic and glass insulator to be use on a system. International Electrotechnical Commission (IEC), Geneva, Switzerland.
[23] Faiza, F., Khattak, A., Rehman, A. U., Ali, A., Mahmood, A., Imran, K., Ulasyar, A., Sheh Zad, H., Ullah, N., & Khan, A. (2021). Multi-Stressed Nano and Micro-Silica/Silicone Rubber Composites with Improved Dielectric and High-Voltage Insulation Properties. Polymers, 13(9), 1400. doi:10.3390/polym13091400.
[24] Suwarno, S. (2006). Leakage Current Waveforms of Outdoor Polymeric Insulators and Possibility of Application for Diagnostics of Insulator Conditions. Journal of Electrical Engineering and Technology, 1(1), 114–119. doi:10.5370/jeet.2006.1.1.114.
[25] García, N., Corrales, T., Guzmán, J., & Tiemblo, P. (2007). Understanding the role of nanosilica particle surfaces in the thermal degradation of nanosilica-poly(methyl methacrylate) solution-blended nanocomposites: From low to high silica concentration. Polymer Degradation and Stability, 92(4), 635–643. doi:10.1016/j.polymdegradstab.2007.01.006.
[26] Tomaszewska, J., Sterzyński, T., & Walczak, D. (2021). Thermal stability of nanosilica-modified poly(Vinyl chloride). Polymers, 13(13). doi:10.3390/polym13132057.
[27] Du, S., Yan, H., Liu, Z., Tang, A., & Li, Y. (2023). A robust and transparent nanosilica-filled silicone rubber coating with synergistically enhanced mechanical properties and barrier performance. Journal of Materials Science & Technology, 151, 219–226. doi:10.1016/j.jmst.2022.12.036.
[28] Rubaian, N., & Al-Arainy, A. A. (2022). Influence of Adding Nano Particles on Dissipation Factor and Volume Resistivity of Polymer. 2022 Muthanna International Conference on Engineering Science and Technology (MICEST), 131–135. doi:10.1109/micest54286.2022.9790233.
[29] Yao, C., Wang, J., Li, C., Mi, Y., & Sun, C. (2011). The syntactical pattern recognition for the leakage current of transmission-line insulators. IEEE Transactions on Power Delivery, 26(4), 2244–2250. doi:10.1109/TPWRD.2011.2121094.
[30] Ramos N., G., Campillo R., M. T., & Naito, K. (1993). A study on the characteristics of various conductive contaminants accumulated on high voltage insulators. IEEE Transactions on Power Delivery, 8(4), 1842–1850. doi:10.1109/61.248293.
[31] Agrawal, K. (2001). Industrial Power Engineering Handbook, Part II: Switchgear Assemblies and Captive Power Generation. Newnes, London, United Kingdom.
[32] Campo, E. A. (2008). Selection of polymeric materials: how to select design properties from different standards. William Andrew, Norwich, United States.
[33] Han, D. H., Park, H. Y., Kang, D. P., Cho, H. G., Min, K. E., Takasu, K., & Kuroyagi, T. (2002). Effects of added silicone oils on the surface characteristics of silicone rubber. IEEE Transactions on Dielectrics and Electrical Insulation, 9(2), 323–328. doi:10.1109/94.993751.
[34] Gao, H., Jia, Z., Yang, J., & Guan, Z. (2006). Effects of Pollutions and Environmental Factors on the Performance of Hydrophobic Transference of Silicone Rubber. 2006 IEEE 8th International Conference on Properties and Applications of Dielectric Materials, 607–610. doi:10.1109/icpadm.2006.284251.
[35] Crespo-Sandova, J., Haddad, A., Griffiths, H., & Coventry, P. F. (2010). Rate of energy absorption as indicator for the tracking/erosion test of silicone rubber. IEEE Transactions on Dielectrics and Electrical Insulation, 17(6), 1772–1780. doi:10.1109/tdei.2010.5658228.
[36] Kumagai, S., & Yoshimura, N. (2001). Tracking and erosion of HTV silicone rubber and suppression mechanism of ATH. IEEE Transactions on Dielectrics and Electrical Insulation, 8(2), 203–211. doi:10.1109/94.919930.
[37] Gorur, R. S., Montesinos, J., Varadadesikan, L., Simmons, S., & Shah, M. (1997). A laboratory test for tracking and erosion resistance of HV outdoor insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 4(6), 767–774. doi:10.1109/94.654696.
[38] Bukit, A. B., Syakur, A., & Windarta, J. (2024). Comparative Analysis of Ceramic Insulator Performance with The Application of Silicone Rubber Coating and Nano-Ceramic Coating. Advances in engineering research/Advances in Engineering Research, Atlantis Press, Dordrecht, Netherlands. doi:10.2991/978-94-6463-480-8_5.
[39] Chen, J., Li, B., Zeng, X., Li, Z., Wen, Y., Hu, Q., Yang, Q., Zhou, M., & Yang, B. (2023). Study on the Influence of Accelerated Aging on the Properties of an RTV Anti-Pollution Flashover Coating. Polymers, 15(3), 751. doi:10.3390/polym15030751.
[40] Ghanbari-Siahkali, A., Mitra, S., Kingshott, P., Almdal, K., Bloch, C., & Rehmeier, H. K. (2005). Investigation of the hydrothermal stability of cross-linked liquid silicone rubber (LSR). Polymer Degradation and Stability, 90(3), 471–480. doi:10.1016/j.polymdegradstab.2005.04.016.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
