Corrosion Performance of a Novel Aluminium 6061-Sea Sand Composite Under Electrochemical Method
Downloads
The need for lightweight materials is increasing from year to year. In its application, lightweight and strong materials also need to be corrosion resistant. Corrosion resistance is an important property in automotive, especially in high humidity areas. Al6061-Sea sand material is a novel material that meets the mechanical standards required in the automotive sector. A previous study of Al 6061-sea sand conducted the mechanical properties of the composite. This current research focuses on the development of Al 6061 material with variations in weight fraction of sea sand reinforcement against the corrosion rate under the potentiodynamic method to determine the corrosion resistance of the composite material. The composite fabrication uses the electroless coating method on sea sand and the stir casting method with a melting temperature of 750°C. The agitation process used a four-bladed impeller for 10 minutes at 600 rpm with a stirring depth of ½ of the height of the molten metal. The tests include density testing, microstructure observation, and corrosion rate under the potentiodynamic method using an electrochemical potentiostat. The test result obtained the lowest corrosion rate results in 2% wt sea sand with a corrosion rate of 0.61875 mmpy. The increase in corrosion rate value is directly proportional to the addition of the weight fraction of sea sand.
Downloads
[1] Griffiths, A. J., & Turnbull, A. (1994). An investigation of the electrochemical polarisation behaviour of 6061 aluminium metal matrix composites. Corrosion Science, 36(1), 23–35. doi:10.1016/0010-938X(94)90106-6.
[2] Sijo, M. T., & Jayadevan, K. R. (2016). Analysis of Stir Cast Aluminium Silicon Carbide Metal Matrix Composite: A Comprehensive Review. Procedia Technology, 24, 379–385. doi:10.1016/j.protcy.2016.05.052.
[3] Zulfia, A., & Adyatma, A. I. (2013). Electroless plating of Al2O3 particles reinforced composites. Advanced Materials Research, 789, 66–71. doi:10.4028/www.scientific.net/AMR.789.66.
[4] Laima, L., Xiaoyue, T., Zelong, L., Guangnan, L., Xiang, Z., Jigui, C., & Yucheng, W. (2015). Preparation and Properties of W-15Cu Composite by Electroless Plating and Powder Metallurgy. Rare Metal Materials and Engineering, 44(12), 3005–3008. doi:10.1016/s1875-5372(16)60039-5.
[5] Siddesh Kumar, N. M., Sadashiva, M., Monica, J., & Praveen Kumar, S. (2022). Investigation on Corrosion Behaviour of Hybrid Aluminium Metal Matrix Composite Welded by Friction Stir Welding. Materials Today: Proceedings, 52, 2339–2344. doi:10.1016/j.matpr.2022.01.362.
[6] Verma, A. S., Sumankant, Suri, N. M., & Yashpal. (2015). Corrosion Behavior of Aluminum Base Particulate Metal Matrix Composites: A Review. Materials Today: Proceedings, 2(4–5), 2840–2851. doi:10.1016/j.matpr.2015.07.299.
[7] Samuel Ratna Kumar, P. S., Robinson Smart, D. S., & John Alexis, S. (2017). Corrosion behaviour of Aluminium Metal Matrix reinforced with Multi-wall Carbon Nanotube. Journal of Asian Ceramic Societies, 5(1), 71–75. doi:10.1016/j.jascer.2017.01.004.
[8] Paciej, R. C., & Agarwala, V. S. (1986). Metallurgical Variables Influencing the Corrosion Susceptibility of a Powder Metallurgy Sicw/Al Composite. Corrosion, 42(12), 718–729. doi:10.5006/1.3583046.
[9] Ashok Kumar, R., Akash, S. J., Arunkumar, S., Balaji, V., Balamurugan, M., & Jeevan Kumar, A. (2020). Fabrication and Corrosion Behaviour of Aluminium Metal Matrix Composites - A Review. IOP Conference Series: Materials Science and Engineering, 923(1), 012056. doi:10.1088/1757-899X/923/1/012056.
[10] Han, Y. M., & Chen, X. G. (2015). Electrochemical behavior of Al-B4C metal matrix composites in NaCl solution. Materials, 8(9), 6455–6470. doi:10.3390/ma8095314.
[11] Das, S. (2010). Effect of particle size and amount on corrosion behaviour of Al-4·5 wt-%Cu/zircon sand composite. Corrosion Engineering Science and Technology, 45(1), 94–96. doi:10.1179/147842209X12464471864411.
[12] Trowsdale, A. J., Noble, B., Harris, S. J., Gibbins, I. S. R., Thompson, G. E., & Wood, G. C. (1996). The influence of silicon carbide reinforcement on the pitting behaviour of aluminium. Corrosion Science, 38(2), 177–191. doi:10.1016/0010-938X(96)00098-4.
[13] Zhang, S. D., Zhang, W. L., Wang, S. G., Gu, X. J., & Wang, J. Q. (2015). Characterisation of three-dimensional porosity in an Fe-based amorphous coating and its correlation with corrosion behaviour. Corrosion Science, 93, 211–221. doi:10.1016/j.corsci.2015.01.022.
[14] Cheng, Y. L., Chen, Z. H., Wu, H. L., & Wang, H. M. (2007). The corrosion behaviour of the aluminum alloy 7075/SiCp metal matrix composite prepared by spray deposition. Materials and Corrosion, 58(4), 280–284. doi:10.1002/maco.200604003.
[15] Alaneme, K. K., & Bodunrin, M. O. (2011). Corrosion Behavior of Alumina Reinforced Aluminium (6063) Metal Matrix Composites. Journal of Minerals and Materials Characterization and Engineering, 10(12), 1153–1165. doi:10.4236/jmmce.2011.1012088.
[16] Nunes, P. C. R., & Ramanathan, L. V. (1995). Corrosion behavior of alumina-aluminum and silicon carbide-aluminum metal-matrix composites. Corrosion, 51(8), 610–617. doi:10.5006/1.3293621.
[17] Zhu, J., & Hihara, L. H. (2010). Corrosion of continuous alumina-fibre reinforced Al-2 wt.% Cu-T6 metal-matrix composite in 3.15 wt.% NaCl solution. Corrosion Science, 52(2), 406–415. doi:10.1016/j.corsci.2009.09.028.
[18] Aliyu, I., Sapuan, S. M., Zainudin, E. S., Zuhri, M. Y. M., & Ridwan, Y. (2023). Hardness and corrosion behaviour of stir cast LM26 Al/sugar palm fibre ash composites. Multidiscipline Modeling in Materials and Structures, 19(4), 748–765. doi:10.1108/MMMS-10-2022-0219.
[19] Fayomi, O. S. I., Anawe, P. A. L., & Daniyan, A. (2018). The Impact of Drugs as Corrosion Inhibitors on Aluminum Alloy in Coastal-Acidified Medium. Corrosion Inhibitors, Principles and Recent Applications, IntechOpen, London, United Kingdom. doi:10.5772/intechopen.72942.
[20] Kosari, A., Tichelaar, F., Visser, P., Zandbergen, H., Terryn, H., & Mol, J. M. C. (2020). Dealloying-driven local corrosion by intermetallic constituent particles and dispersoids in aerospace aluminium alloys. Corrosion Science, 177, 108947. doi:10.1016/j.corsci.2020.108947.
[21] Yang, S., Gao, X., Li, W., Dai, Y., Zhang, J., Zhang, X., & Yue, H. (2024). Effects of the graphene content on mechanical properties and corrosion resistance of aluminum matrix composite. Journal of Materials Research and Technology, 28, 1900–1906. doi:10.1016/j.jmrt.2023.12.059.
[22] Chen, S., Niu, P., Huang, Y., Li, Y., Fu, X., Ke, L., Liu, F., & Liu, F. (2025). Corrosion properties and mechanisms of friction stir lap welded TiB2/2024 aluminum matrix composite joint. Electrochimica Acta, 509, 1–12. doi:10.1016/j.electacta.2024.145306.
[23] Prabakaran, V., R, P., M, P., & S, K. kumar. (2024). Study of tribological performance and corrosion resistance of aluminum alloy 6063 composites enhanced with a combination of silicon carbide and tungsten disulfide particles. Results in Surfaces and Interfaces, 15, 100233. doi:10.1016/j.rsurfi.2024.100233.
[24] Patel, M., Jain, S., & Murugesan, J. (2025). Investigation of Mechanical Properties, Fretting Wear, and Corrosion Behaviour of AA6063/Si3N4 Nanocomposites Fabricated via Friction Stir Processing. Arabian Journal for Science and Engineering, 50(17), 13795–13805. doi:10.1007/s13369-024-09551-z.
[25] Cui, S., Tong, W., Zhai, H., Zhang, J., Xiong, D., Liu, J., & Qiang, Y. (2025). Corrosion and wear behavior of the Fe-based amorphous coating in extremely aggressive solutions. Intermetallics, 181. doi:10.1016/j.intermet.2025.108713.
[26] Kiourtsidis, G. E., & Skolianos, S. M. (2007). Pitting corrosion of artificially aged T6 AA2024/SiCp composites in 3.5 wt.% NaCl aqueous solution. Corrosion Science, 49(6), 2711–2725. doi:10.1016/j.corsci.2006.10.008.
[27] An, Q., Cong, X., Shen, P., & Jiang, Q. (2019). Roles of alloying elements in wetting of SiC by Al. Journal of Alloys and Compounds, 784, 1212–1220. doi:10.1016/j.jallcom.2019.01.138.
[28] Zakaulla, M., Khan, A. R. A., & Mukunda, P. G. (2014). Effect of Electroless Copper Coating on the Corrosion Behavior of Aluminium Based Metal Matrix Composites Reinforced with Silicon Carbide Particles. Journal of Minerals and Materials Characterization and Engineering, 02(01), 21–25. doi:10.4236/jmmce.2014.21004.
[29] Gehre, P., Aneziris, C. G., Berek, H., Parr, C., & Reinmöller, M. (2015). Corrosion of magnesium aluminate spinel-rich refractories by sulphur-containing slag. Journal of the European Ceramic Society, 35(5), 1613–1620. doi:10.1016/j.jeurceramsoc.2014.11.031.
[30] Hidayat, T. A. S., Surojo, E., Ariawan, D., Akbar, H. I., Imanullah, F., & Fanani, E. W. A. (2024). Experimental Study of Quenching Agent on AA6061-Sea Sand Composite: Effect Quenching Medium to Mechanical Properties and Distortion. Evergreen, 11(3), 2273–2283. doi:10.5109/7236870.
[31] Mufti, H. R., Akbar, H. I., Surojo, E., Wibowo, W., Triyono, T., Cahyono, S. I., Muhayat, N., & Triyono, T. (2021). The Effect of Cooling Media on T6 Heat Treatment on the Tensile Strength and Microstructure of Al6061-Beach Sand Composites. METAL: Jurnal Sistem Mekanik Dan Termal, 5(2), 51–59. doi:10.25077/metal.5.2.51-59.2021.
[32] Jebaraj, A. V., Aditya, K. V. V., Kumar, T. S., Ajaykumar, L., & Deepak, C. R. (2019). Mechanical and corrosion behaviour of aluminum alloy 5083 and its weldment for marine applications. Materials Today: Proceedings, 22, 1470–1478. doi:10.1016/j.matpr.2020.01.505.
[33] ASTM E562-11. (2019). Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count. ASTM International, Pennsylvania, United States. doi:10.1520/E0562-11.
[34] Sulardjaka, S., Nugroho, S., & Wacono, D. D. (2015). The Effect of Percentage Weight of Sic Powder on the Hardness and Bending Strength of Composites with Alsitib Matrix Reinforced by Sic Powder. Rotasi, 17(3), 156. doi:10.14710/rotasi.17.3.156-161.
[35] Hashim, J., Looney, L., & Hashmi, M. S. J. (1999). Metal matrix composites: production by the stir casting method. Journal of Materials Processing Technology, 92–93, 1–7. doi:10.1016/s0924-0136(99)00118-1.
[36] Garg, P., Jamwal, A., Kumar, D., Sadasivuni, K. K., Hussain, C. M., & Gupta, P. (2019). Advance research progresses in aluminium matrix composites: manufacturing & applications. Journal of Materials Research and Technology, 8(5), 4924–4939. doi:10.1016/j.jmrt.2019.06.028.
[37] Zheng, J., Shu, G., Wang, W., Li, Q., & Liu, W. (2015). Surface quality improvement of B 4 C particles for electroless copper coating by Cu activation and oxidation roughening methods. Applied Surface Science, 349, 733–739. doi:10.1016/j.apsusc.2015.05.052.
[38] Abbass, M. K., Hassan, K. S., & Alwan, A. S. (2015). Study of Corrosion Resistance of Aluminum Alloy 6061/SiC Composites in 3.5% NaCl Solution. International Journal of Materials, Mechanics and Manufacturing, 3(1), 31–35. doi:10.7763/ijmmm.2015.v3.161.
[39] Reena Kumari, P. D., Nayak, J., & Nityananda Shetty, A. (2016). Corrosion behavior of 6061/Al-15 vol. pct. SiC(p) composite and the base alloy in sodium hydroxide solution. Arabian Journal of Chemistry, 9, S1144–S1154. doi:10.1016/j.arabjc.2011.12.003.
[40] Kumar, S. R., Krishnaa, S. D., Krishna, M. D., Gokulkumar, N. T., & Akilesh, A. R. (2021). Investigation on corrosion behaviour of aluminium 6061-T6 alloy in acidic, alkaline and salt medium. Materials Today: Proceedings, 45, 1878–1881. doi:10.1016/j.matpr.2020.09.079.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















